Testing Matrix Rank, Optimally

We show that for the problem of testing if a matrix has rank at most , or requires changing an -fraction of entries to have rank at most , there is a non-adaptive query algorithm making queries. Our algorithm works for any field . This improves upon the previous bound (SODA'03), and bypasses an lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of . We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of queries in the sensing model for which query access comes in the form of ; perhaps surprisingly these bounds do not depend on . We next develop a novel property testing framework for testing numerical properties of a real-valued matrix more generally, which includes the stable rank, Schatten- norms, and SVD entropy. Specifically, we propose a bounded entry model, where is required to have entries bounded by in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
View on arXiv