ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.3688
  4. Cited By
Dimension-independent likelihood-informed MCMC

Dimension-independent likelihood-informed MCMC

13 November 2014
Tiangang Cui
K. Law
Youssef M. Marzouk
ArXivPDFHTML

Papers citing "Dimension-independent likelihood-informed MCMC"

11 / 11 papers shown
Title
Optimal low-rank approximations of Bayesian linear inverse problems
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
60
129
0
13 Jul 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
55
158
0
19 Mar 2014
A computational framework for infinite-dimensional Bayesian inverse
  problems: Part II. Stochastic Newton MCMC with application to ice sheet flow
  inverse problems
A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems
N. Petra
James Martin
G. Stadler
Omar Ghattas
48
231
0
28 Aug 2013
A computational framework for infinite-dimensional Bayesian inverse
  problems. Part I: The linearized case, with application to global seismic
  inversion
A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion
T. Bui-Thanh
Omar Ghattas
James Martin
G. Stadler
56
390
0
06 Aug 2013
Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A
  case study for the Navier-Stokes equations
Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A case study for the Navier-Stokes equations
N. Kantas
A. Beskos
Ajay Jasra
58
100
0
23 Jul 2013
Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion
Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion
V. H. Hoang
Christoph Schwab
Andrew M. Stuart
45
112
0
10 Jul 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
69
480
0
03 Feb 2012
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Martin Hairer
Andrew M. Stuart
Sebastian J. Vollmer
68
187
0
06 Dec 2011
Optimal scaling and diffusion limits for the Langevin algorithm in high
  dimensions
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions
Natesh S. Pillai
Andrew M. Stuart
Alexandre Hoang Thiery
69
99
0
02 Mar 2011
Diffusion limits of the random walk Metropolis algorithm in high
  dimensions
Diffusion limits of the random walk Metropolis algorithm in high dimensions
Jonathan C. Mattingly
Natesh S. Pillai
Andrew M. Stuart
76
114
0
22 Mar 2010
On the ergodicity of the adaptive Metropolis algorithm on unbounded
  domains
On the ergodicity of the adaptive Metropolis algorithm on unbounded domains
E. Saksman
M. Vihola
73
72
0
18 Jun 2008
1