ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0806.2933
84
72

On the ergodicity of the adaptive Metropolis algorithm on unbounded domains

18 June 2008
E. Saksman
M. Vihola
ArXivPDFHTML
Abstract

This paper describes sufficient conditions to ensure the correct ergodicity of the Adaptive Metropolis (AM) algorithm of Haario, Saksman and Tamminen [Bernoulli 7 (2001) 223--242] for target distributions with a noncompact support. The conditions ensuring a strong law of large numbers require that the tails of the target density decay super-exponentially and have regular contours. The result is based on the ergodicity of an auxiliary process that is sequentially constrained to feasible adaptation sets, independent estimates of the growth rate of the AM chain and the corresponding geometric drift constants. The ergodicity result of the constrained process is obtained through a modification of the approach due to Andrieu and Moulines [Ann. Appl. Probab. 16 (2006) 1462--1505].

View on arXiv
Comments on this paper