Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.1134
Cited By
Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems
5 November 2014
Christopher De Sa
K. Olukotun
Christopher Ré
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems"
31 / 31 papers shown
Title
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Alex Saad-Falcon
Brighton Ancelin
Justin Romberg
19
0
0
16 May 2025
Black-Box
k
k
k
-to-
1
1
1
-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
39
2
0
06 Mar 2024
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
QuIP: 2-Bit Quantization of Large Language Models With Guarantees
Jerry Chee
Yaohui Cai
Volodymyr Kuleshov
Chris De Sa
MQ
45
189
0
25 Jul 2023
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
52
8
0
08 Dec 2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
27
4
0
13 Oct 2022
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
75
34
0
25 May 2022
AgFlow: Fast Model Selection of Penalized PCA via Implicit Regularization Effects of Gradient Flow
Haiyan Jiang
Haoyi Xiong
Dongrui Wu
Ji Liu
Dejing Dou
18
1
0
07 Oct 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
185
0
19 Apr 2021
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
84
0
12 Jun 2018
Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning
Xin Zhang
Jia-Wei Liu
Zhengyuan Zhu
16
17
0
24 May 2018
History PCA: A New Algorithm for Streaming PCA
Puyudi Yang
Cho-Jui Hsieh
Jane-ling Wang
AI4TS
20
23
0
15 Feb 2018
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
35
89
0
10 Jul 2017
A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality
Songtao Lu
Mingyi Hong
Zhengdao Wang
24
47
0
24 Mar 2017
Learning an Invariant Hilbert Space for Domain Adaptation
Samitha Herath
Mehrtash Harandi
Fatih Porikli
16
107
0
25 Nov 2016
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
C. Caramanis
Sujay Sanghavi
23
179
0
12 Sep 2016
Parallel SGD: When does averaging help?
Jian Zhang
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
MoMe
FedML
54
109
0
23 Jun 2016
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
11
78
0
27 May 2016
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin
Sham Kakade
Praneeth Netrapalli
19
81
0
26 May 2016
Matrix Completion has No Spurious Local Minimum
Rong Ge
J. Lee
Tengyu Ma
25
596
0
24 May 2016
Global Optimality of Local Search for Low Rank Matrix Recovery
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
ODL
36
386
0
23 May 2016
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
25
13
0
22 Mar 2016
Median-Truncated Nonconvex Approach for Phase Retrieval with Outliers
Huishuai Zhang
Yuejie Chi
Yingbin Liang
22
55
0
11 Mar 2016
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm
Prateek Jain
Chi Jin
Sham Kakade
Praneeth Netrapalli
Aaron Sidford
28
128
0
22 Feb 2016
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
Chi Jin
Sham Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
19
42
0
29 Oct 2015
Convergence of Stochastic Gradient Descent for PCA
Ohad Shamir
19
85
0
30 Sep 2015
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
27
172
0
14 Sep 2015
A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints
Nicolas Boumal
21
67
0
01 Jun 2015
Guaranteed Matrix Completion via Non-convex Factorization
Ruoyu Sun
Zhi-Quan Luo
40
450
0
28 Nov 2014
1