ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.1134
  4. Cited By
Global Convergence of Stochastic Gradient Descent for Some Non-convex
  Matrix Problems

Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems

5 November 2014
Christopher De Sa
K. Olukotun
Christopher Ré
ArXivPDFHTML

Papers citing "Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems"

31 / 31 papers shown
Title
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Alex Saad-Falcon
Brighton Ancelin
Justin Romberg
17
0
0
16 May 2025
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
39
2
0
06 Mar 2024
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
QuIP: 2-Bit Quantization of Large Language Models With Guarantees
QuIP: 2-Bit Quantization of Large Language Models With Guarantees
Jerry Chee
Yaohui Cai
Volodymyr Kuleshov
Chris De Sa
MQ
42
189
0
25 Jul 2023
A Novel Stochastic Gradient Descent Algorithm for Learning Principal
  Subspaces
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
52
8
0
08 Dec 2022
From Gradient Flow on Population Loss to Learning with Stochastic
  Gradient Descent
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
27
4
0
13 Oct 2022
Preference Dynamics Under Personalized Recommendations
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
75
34
0
25 May 2022
AgFlow: Fast Model Selection of Penalized PCA via Implicit
  Regularization Effects of Gradient Flow
AgFlow: Fast Model Selection of Penalized PCA via Implicit Regularization Effects of Gradient Flow
Haiyan Jiang
Haoyi Xiong
Dongrui Wu
Ji Liu
Dejing Dou
18
1
0
07 Oct 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
185
0
19 Apr 2021
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
84
0
12 Jun 2018
Taming Convergence for Asynchronous Stochastic Gradient Descent with
  Unbounded Delay in Non-Convex Learning
Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning
Xin Zhang
Jia-Wei Liu
Zhengyuan Zhu
16
17
0
24 May 2018
History PCA: A New Algorithm for Streaming PCA
History PCA: A New Algorithm for Streaming PCA
Puyudi Yang
Cho-Jui Hsieh
Jane-ling Wang
AI4TS
18
23
0
15 Feb 2018
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
35
89
0
10 Jul 2017
A Nonconvex Splitting Method for Symmetric Nonnegative Matrix
  Factorization: Convergence Analysis and Optimality
A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality
Songtao Lu
Mingyi Hong
Zhengdao Wang
24
47
0
24 Mar 2017
Learning an Invariant Hilbert Space for Domain Adaptation
Learning an Invariant Hilbert Space for Domain Adaptation
Samitha Herath
Mehrtash Harandi
Fatih Porikli
16
107
0
25 Nov 2016
Non-square matrix sensing without spurious local minima via the
  Burer-Monteiro approach
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
C. Caramanis
Sujay Sanghavi
23
179
0
12 Sep 2016
Parallel SGD: When does averaging help?
Parallel SGD: When does averaging help?
Jian Zhang
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
MoMe
FedML
54
109
0
23 Jun 2016
Efficient Estimation of Partially Linear Models for Spatial Data over
  Complex Domain
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
9
78
0
27 May 2016
Provable Efficient Online Matrix Completion via Non-convex Stochastic
  Gradient Descent
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin
Sham Kakade
Praneeth Netrapalli
19
81
0
26 May 2016
Matrix Completion has No Spurious Local Minimum
Matrix Completion has No Spurious Local Minimum
Rong Ge
J. Lee
Tengyu Ma
25
596
0
24 May 2016
Global Optimality of Local Search for Low Rank Matrix Recovery
Global Optimality of Local Search for Low Rank Matrix Recovery
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
ODL
30
386
0
23 May 2016
Trading-off variance and complexity in stochastic gradient descent
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
25
13
0
22 Mar 2016
Median-Truncated Nonconvex Approach for Phase Retrieval with Outliers
Median-Truncated Nonconvex Approach for Phase Retrieval with Outliers
Huishuai Zhang
Yuejie Chi
Yingbin Liang
22
55
0
11 Mar 2016
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample
  Guarantees for Oja's Algorithm
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm
Prateek Jain
Chi Jin
Sham Kakade
Praneeth Netrapalli
Aaron Sidford
26
128
0
22 Feb 2016
Robust Shift-and-Invert Preconditioning: Faster and More Sample
  Efficient Algorithms for Eigenvector Computation
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
Chi Jin
Sham Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
17
42
0
29 Oct 2015
Convergence of Stochastic Gradient Descent for PCA
Convergence of Stochastic Gradient Descent for PCA
Ohad Shamir
17
85
0
30 Sep 2015
Dropping Convexity for Faster Semi-definite Optimization
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
27
172
0
14 Sep 2015
A Riemannian low-rank method for optimization over semidefinite matrices
  with block-diagonal constraints
A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints
Nicolas Boumal
19
67
0
01 Jun 2015
Guaranteed Matrix Completion via Non-convex Factorization
Guaranteed Matrix Completion via Non-convex Factorization
Ruoyu Sun
Zhi-Quan Luo
40
450
0
28 Nov 2014
1