ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.5191
  4. Cited By
Hamiltonian Monte Carlo Without Detailed Balance

Hamiltonian Monte Carlo Without Detailed Balance

18 September 2014
Jascha Narain Sohl-Dickstein
M. Mudigonda
M. DeWeese
ArXivPDFHTML

Papers citing "Hamiltonian Monte Carlo Without Detailed Balance"

14 / 14 papers shown
Title
Principled Gradient-based Markov Chain Monte Carlo for Text Generation
Principled Gradient-based Markov Chain Monte Carlo for Text Generation
Li Du
Afra Amini
Lucas Torroba Hennigen
Xinyan Velocity Yu
Jason Eisner
Holden Lee
Ryan Cotterell
BDL
23
1
0
29 Dec 2023
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
Nonparametric Involutive Markov Chain Monte Carlo
Nonparametric Involutive Markov Chain Monte Carlo
Carol Mak
Fabian Zaiser
C. Ong
20
1
0
02 Nov 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
18
14
0
26 Feb 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
33
13
0
03 Nov 2021
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale
  distributions
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions
Chirag Modi
A. Barnett
Bob Carpenter
36
14
0
01 Oct 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
23
24
0
29 Dec 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Involutive MCMC: a Unifying Framework
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
10
36
0
30 Jun 2020
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond
  the reversible scenario
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
33
28
0
14 Jun 2019
Modified Hamiltonian Monte Carlo for Bayesian inference
Modified Hamiltonian Monte Carlo for Bayesian inference
Tijana Radivojević
E. Akhmatskaya
12
31
0
13 Jun 2017
On the Geometric Ergodicity of Hamiltonian Monte Carlo
On the Geometric Ergodicity of Hamiltonian Monte Carlo
Samuel Livingstone
M. Betancourt
Simon Byrne
Mark Girolami
37
116
0
29 Jan 2016
1