Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1409.3257
Cited By
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
10 September 2014
Yuchen Zhang
Xiao Lin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization"
34 / 34 papers shown
Title
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
36
0
0
18 Oct 2024
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
33
179
0
28 Mar 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
21
7
0
01 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
21
12
0
19 Jan 2022
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
23
25
0
04 Jan 2021
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
33
97
0
29 Oct 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
32
122
0
23 Jun 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
30
19
0
10 May 2019
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
29
184
0
15 Jun 2017
Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization
Tomoya Murata
Taiji Suzuki
OffRL
30
28
0
01 Mar 2017
Dual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization
Bo Liu
Xiaotong Yuan
Lezi Wang
Qingshan Liu
Dimitris N. Metaxas
16
16
0
01 Mar 2017
Communication-Efficient Algorithms for Decentralized and Stochastic Optimization
Guanghui Lan
Soomin Lee
Yi Zhou
35
218
0
14 Jan 2017
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
Jialei Wang
J. Lee
M. Mahdavi
Mladen Kolar
Nathan Srebro
18
50
0
10 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
21
95
0
12 Sep 2016
Fast and Simple Optimization for Poisson Likelihood Models
Niao He
Zaïd Harchaoui
Yichen Wang
Le Song
15
14
0
03 Aug 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
18
210
0
20 May 2016
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
13
22
0
13 Apr 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
16
389
0
17 Mar 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
38
172
0
30 Dec 2015
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
23
28
0
13 Dec 2015
An optimal randomized incremental gradient method
Guanghui Lan
Yi Zhou
23
220
0
08 Jul 2015
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
19
19
0
12 Jun 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
53
97
0
27 Feb 2015
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
33
72
0
01 Jan 2015
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
30
58
0
21 Nov 2014
A Lower Bound for the Optimization of Finite Sums
Alekh Agarwal
Léon Bottou
28
124
0
02 Oct 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
52
1,243
0
10 Sep 2013
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1