Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1409.2045
Cited By
Global Convergence of Online Limited Memory BFGS
6 September 2014
Aryan Mokhtari
Alejandro Ribeiro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global Convergence of Online Limited Memory BFGS"
50 / 60 papers shown
Title
An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification
Lu Jiang
Qi Wang
Yuhang Chang
Jianing Song
Haoyue Fu
Xiaochun Yang
44
0
0
13 Mar 2024
Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
Zhuanghua Liu
Luo Luo
K. H. Low
27
2
0
04 Feb 2024
mL-BFGS: A Momentum-based L-BFGS for Distributed Large-Scale Neural Network Optimization
Yue Niu
Zalan Fabian
Sunwoo Lee
Mahdi Soltanolkotabi
Salman Avestimehr
ODL
17
2
0
25 Jul 2023
Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic Superlinear Convergence Rate
Zhan Gao
Aryan Mokhtari
Alec Koppel
15
2
0
27 Jun 2023
Machine Unlearning: A Survey
Heng Xu
Tianqing Zhu
Lefeng Zhang
Wanlei Zhou
Philip S. Yu
MU
41
19
0
06 Jun 2023
Sharpened Lazy Incremental Quasi-Newton Method
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
32
2
0
26 May 2023
Online Learning Under A Separable Stochastic Approximation Framework
Min Gan
Xiang-Xiang Su
Guang-yong Chen
Jing Chen
28
0
0
12 May 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
34
13
0
09 Mar 2023
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
26
13
0
17 Jul 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
16
1
0
18 May 2022
Optimization for Classical Machine Learning Problems on the GPU
Soren Laue
Mark Blacher
Joachim Giesen
6
5
0
30 Mar 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
24
14
0
19 Jan 2022
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
Majid Jahani
S. Rusakov
Zheng Shi
Peter Richtárik
Michael W. Mahoney
Martin Takávc
ODL
24
25
0
11 Sep 2021
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
40
2
0
20 Aug 2021
Memory Augmented Optimizers for Deep Learning
Paul-Aymeric McRae
Prasanna Parthasarathi
Mahmoud Assran
Sarath Chandar
ODL
30
3
0
20 Jun 2021
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach
Qiujiang Jin
Aryan Mokhtari
14
4
0
10 Jun 2021
A Retrospective Approximation Approach for Smooth Stochastic Optimization
David Newton
Raghu Bollapragada
R. Pasupathy
N. Yip
35
2
0
07 Mar 2021
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
19
13
0
15 Dec 2020
BEAR: Sketching BFGS Algorithm for Ultra-High Dimensional Feature Selection in Sublinear Memory
Amirali Aghazadeh
Vipul Gupta
Alex DeWeese
O. O. Koyluoglu
Kannan Ramchandran
22
2
0
26 Oct 2020
An adaptive Hessian approximated stochastic gradient MCMC method
Yating Wang
Wei Deng
Guang Lin
BDL
13
5
0
03 Oct 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization
Xuezhe Ma
ODL
34
31
0
28 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
37
0
0
26 Aug 2020
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
196
0
26 Jun 2020
Practical Quasi-Newton Methods for Training Deep Neural Networks
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
16
104
0
16 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
19
10
0
06 Jun 2020
RFN: A Random-Feature Based Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Spaces
Ting-Jui Chang
Shahin Shahrampour
17
2
0
12 Feb 2020
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
17
36
0
21 Oct 2019
A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient
S. Indrapriyadarsini
Shahrzad Mahboubi
H. Ninomiya
H. Asai
ODL
14
10
0
09 Sep 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
549
0
17 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
20
14
0
30 May 2019
Learning Networked Exponential Families with Network Lasso
A. Jung
14
2
0
22 May 2019
Accurate and Robust Alignment of Variable-stained Histologic Images Using a General-purpose Greedy Diffeomorphic Registration Tool
Ludovic Venet
Sarthak Pati
Paul Yushkevich
Spyridon Bakas
13
10
0
26 Apr 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
22
18
0
26 Oct 2018
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
33
7
0
29 Sep 2018
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
23
111
0
24 Apr 2018
Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
18
52
0
14 Mar 2018
A Progressive Batching L-BFGS Method for Machine Learning
Raghu Bollapragada
Dheevatsa Mudigere
J. Nocedal
Hao-Jun Michael Shi
P. T. P. Tang
ODL
11
152
0
15 Feb 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
35
9
0
12 Feb 2018
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
19
21
0
20 Dec 2017
Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan
Ying Xiao
Rif A. Saurous
ODL
22
19
0
08 Dec 2017
Straggler Mitigation in Distributed Optimization Through Data Encoding
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
20
142
0
14 Nov 2017
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
Hiroyuki Kasai
21
3
0
27 Oct 2017
Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
Hiroyuki Kasai
19
27
0
29 Sep 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAML
ODL
25
44
0
26 Jul 2017
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
Aryan Mokhtari
Alejandro Ribeiro
24
16
0
22 May 2017
Accelerated Stochastic Quasi-Newton Optimization on Riemann Manifolds
A. Roychowdhury
19
4
0
06 Apr 2017
Stochastic L-BFGS: Improved Convergence Rates and Practical Acceleration Strategies
Renbo Zhao
W. Haskell
Vincent Y. F. Tan
17
29
0
01 Apr 2017
Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
Hiroyuki Kasai
Hiroyuki Sato
Bamdev Mishra
16
22
0
15 Mar 2017
1
2
Next