ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.2045
  4. Cited By
Global Convergence of Online Limited Memory BFGS

Global Convergence of Online Limited Memory BFGS

6 September 2014
Aryan Mokhtari
Alejandro Ribeiro
ArXivPDFHTML

Papers citing "Global Convergence of Online Limited Memory BFGS"

50 / 60 papers shown
Title
An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification
An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification
Lu Jiang
Qi Wang
Yuhang Chang
Jianing Song
Haoyue Fu
Xiaochun Yang
44
0
0
13 Mar 2024
Incremental Quasi-Newton Methods with Faster Superlinear Convergence
  Rates
Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
Zhuanghua Liu
Luo Luo
K. H. Low
27
2
0
04 Feb 2024
mL-BFGS: A Momentum-based L-BFGS for Distributed Large-Scale Neural
  Network Optimization
mL-BFGS: A Momentum-based L-BFGS for Distributed Large-Scale Neural Network Optimization
Yue Niu
Zalan Fabian
Sunwoo Lee
Mahdi Soltanolkotabi
Salman Avestimehr
ODL
17
2
0
25 Jul 2023
Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic
  Superlinear Convergence Rate
Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic Superlinear Convergence Rate
Zhan Gao
Aryan Mokhtari
Alec Koppel
15
2
0
27 Jun 2023
Machine Unlearning: A Survey
Machine Unlearning: A Survey
Heng Xu
Tianqing Zhu
Lefeng Zhang
Wanlei Zhou
Philip S. Yu
MU
41
19
0
06 Jun 2023
Sharpened Lazy Incremental Quasi-Newton Method
Sharpened Lazy Incremental Quasi-Newton Method
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
32
2
0
26 May 2023
Online Learning Under A Separable Stochastic Approximation Framework
Online Learning Under A Separable Stochastic Approximation Framework
Min Gan
Xiang-Xiang Su
Guang-yong Chen
Jing Chen
28
0
0
12 May 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Provably Convergent Plug-and-Play Quasi-Newton Methods
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
34
13
0
09 Mar 2023
SP2: A Second Order Stochastic Polyak Method
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
26
13
0
17 Jul 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
16
1
0
18 May 2022
Optimization for Classical Machine Learning Problems on the GPU
Optimization for Classical Machine Learning Problems on the GPU
Soren Laue
Mark Blacher
Joachim Giesen
6
5
0
30 Mar 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized
  Learning: Part I
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
24
14
0
19 Jan 2022
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
  Information
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
Majid Jahani
S. Rusakov
Zheng Shi
Peter Richtárik
Michael W. Mahoney
Martin Takávc
ODL
24
25
0
11 Sep 2021
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
40
2
0
20 Aug 2021
Memory Augmented Optimizers for Deep Learning
Memory Augmented Optimizers for Deep Learning
Paul-Aymeric McRae
Prasanna Parthasarathi
Mahmoud Assran
Sarath Chandar
ODL
30
3
0
20 Jun 2021
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive
  Sample Size Approach
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach
Qiujiang Jin
Aryan Mokhtari
14
4
0
10 Jun 2021
A Retrospective Approximation Approach for Smooth Stochastic
  Optimization
A Retrospective Approximation Approach for Smooth Stochastic Optimization
David Newton
Raghu Bollapragada
R. Pasupathy
N. Yip
35
2
0
07 Mar 2021
Are we Forgetting about Compositional Optimisers in Bayesian
  Optimisation?
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
19
13
0
15 Dec 2020
BEAR: Sketching BFGS Algorithm for Ultra-High Dimensional Feature
  Selection in Sublinear Memory
BEAR: Sketching BFGS Algorithm for Ultra-High Dimensional Feature Selection in Sublinear Memory
Amirali Aghazadeh
Vipul Gupta
Alex DeWeese
O. O. Koyluoglu
Kannan Ramchandran
22
2
0
26 Oct 2020
An adaptive Hessian approximated stochastic gradient MCMC method
An adaptive Hessian approximated stochastic gradient MCMC method
Yating Wang
Wei Deng
Guang Lin
BDL
11
5
0
03 Oct 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for
  Nonconvex Stochastic Optimization
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization
Xuezhe Ma
ODL
34
31
0
28 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
37
0
0
26 Aug 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
196
0
26 Jun 2020
Practical Quasi-Newton Methods for Training Deep Neural Networks
Practical Quasi-Newton Methods for Training Deep Neural Networks
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
13
104
0
16 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
16
10
0
06 Jun 2020
RFN: A Random-Feature Based Newton Method for Empirical Risk
  Minimization in Reproducing Kernel Hilbert Spaces
RFN: A Random-Feature Based Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Spaces
Ting-Jui Chang
Shahin Shahrampour
17
2
0
12 Feb 2020
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex
  Optimization
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
17
36
0
21 Oct 2019
A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient
A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient
S. Indrapriyadarsini
Shahrzad Mahboubi
H. Ninomiya
H. Asai
ODL
14
10
0
09 Sep 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
549
0
17 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed
  SR1
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
20
14
0
30 May 2019
Learning Networked Exponential Families with Network Lasso
Learning Networked Exponential Families with Network Lasso
A. Jung
14
2
0
22 May 2019
Accurate and Robust Alignment of Variable-stained Histologic Images
  Using a General-purpose Greedy Diffeomorphic Registration Tool
Accurate and Robust Alignment of Variable-stained Histologic Images Using a General-purpose Greedy Diffeomorphic Registration Tool
Ludovic Venet
Sarthak Pati
Paul Yushkevich
Spyridon Bakas
11
10
0
26 Apr 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical
  Risk Minimization via Accumulating Sample Strategy
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
22
18
0
26 Oct 2018
A fast quasi-Newton-type method for large-scale stochastic optimisation
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
33
7
0
29 Sep 2018
Stochastic Conditional Gradient Methods: From Convex Minimization to
  Submodular Maximization
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
21
111
0
24 Apr 2018
Redundancy Techniques for Straggler Mitigation in Distributed
  Optimization and Learning
Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
16
52
0
14 Mar 2018
A Progressive Batching L-BFGS Method for Machine Learning
A Progressive Batching L-BFGS Method for Machine Learning
Raghu Bollapragada
Dheevatsa Mudigere
J. Nocedal
Hao-Jun Michael Shi
P. T. P. Tang
ODL
11
152
0
15 Feb 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale
  problems
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
32
9
0
12 Feb 2018
Statistical Inference for the Population Landscape via Moment Adjusted
  Stochastic Gradients
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
19
21
0
20 Dec 2017
Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural
  Networks
Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan
Ying Xiao
Rif A. Saurous
ODL
22
19
0
08 Dec 2017
Straggler Mitigation in Distributed Optimization Through Data Encoding
Straggler Mitigation in Distributed Optimization Through Data Encoding
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
20
142
0
14 Nov 2017
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
Hiroyuki Kasai
19
3
0
27 Oct 2017
Fast online low-rank tensor subspace tracking by CP decomposition using
  recursive least squares from incomplete observations
Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
Hiroyuki Kasai
17
27
0
29 Sep 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAML
ODL
25
44
0
26 Jul 2017
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton
  Method
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
Aryan Mokhtari
Alejandro Ribeiro
22
16
0
22 May 2017
Accelerated Stochastic Quasi-Newton Optimization on Riemann Manifolds
Accelerated Stochastic Quasi-Newton Optimization on Riemann Manifolds
A. Roychowdhury
19
4
0
06 Apr 2017
Stochastic L-BFGS: Improved Convergence Rates and Practical Acceleration
  Strategies
Stochastic L-BFGS: Improved Convergence Rates and Practical Acceleration Strategies
Renbo Zhao
W. Haskell
Vincent Y. F. Tan
17
29
0
01 Apr 2017
Riemannian stochastic quasi-Newton algorithm with variance reduction and
  its convergence analysis
Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
Hiroyuki Kasai
Hiroyuki Sato
Bamdev Mishra
16
22
0
15 Mar 2017
12
Next