Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1407.5599
Cited By
Scalable Kernel Methods via Doubly Stochastic Gradients
21 July 2014
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Kernel Methods via Doubly Stochastic Gradients"
34 / 34 papers shown
Title
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
Tongzheng Ren
Zhaolin Ren
Haitong Ma
Na Li
Bo Dai
30
10
0
08 Apr 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
QC-ODKLA: Quantized and Communication-Censored Online Decentralized Kernel Learning via Linearized ADMM
Ping Xu
Yue Wang
Xiang Chen
Zhi Tian
21
2
0
04 Aug 2022
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
16
6
0
11 Dec 2021
A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning
Tongzheng Ren
Tianjun Zhang
Csaba Szepesvári
Bo Dai
24
19
0
22 Nov 2021
Spectral risk-based learning using unbounded losses
Matthew J. Holland
El Mehdi Haress
19
10
0
11 May 2021
Action Recognition with Kernel-based Graph Convolutional Networks
H. Sahbi
GNN
23
1
0
28 Dec 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
19
112
0
18 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization
Wanli Shi
Bin Gu
Xinag Li
Heng-Chiao Huang
29
13
0
24 Dec 2019
Stochastic gradient descent for hybrid quantum-classical optimization
R. Sweke
Frederik Wilde
Johannes Jakob Meyer
Maria Schuld
Paul K. Fährmann
Barthélémy Meynard-Piganeau
Jens Eisert
17
236
0
02 Oct 2019
Quadruply Stochastic Gradients for Large Scale Nonlinear Semi-Supervised AUC Optimization
Wanli Shi
Bin Gu
Xiang Li
Xiang Geng
Heng-Chiao Huang
26
15
0
29 Jul 2019
No Training Required: Exploring Random Encoders for Sentence Classification
John Wieting
Douwe Kiela
8
98
0
29 Jan 2019
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
29
12
0
11 Oct 2018
SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation
Bo Dai
Albert Eaton Shaw
Lihong Li
Lin Xiao
Niao He
Zhen Liu
Jianshu Chen
Le Song
26
25
0
29 Dec 2017
Boosting the Actor with Dual Critic
Bo Dai
Albert Eaton Shaw
Niao He
Lihong Li
Le Song
29
46
0
29 Dec 2017
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
30
70
0
23 Nov 2017
Decentralized Online Learning with Kernels
Alec Koppel
Santiago Paternain
C. Richard
Alejandro Ribeiro
18
51
0
11 Oct 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
24
75
0
30 Mar 2017
Deep Kernelized Autoencoders
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
Robert Jenssen
L. Livi
20
18
0
08 Feb 2017
Parsimonious Online Learning with Kernels via Sparse Projections in Function Space
Alec Koppel
Garrett A. Warnell
Ethan Stump
Alejandro Ribeiro
18
79
0
13 Dec 2016
Faster Kernel Ridge Regression Using Sketching and Preconditioning
H. Avron
K. Clarkson
David P. Woodruff
35
121
0
10 Nov 2016
Theory of the GMM Kernel
Ping Li
Cun-Hui Zhang
30
23
0
01 Aug 2016
Learning from Conditional Distributions via Dual Embeddings
Bo Dai
Niao He
Yunpeng Pan
Byron Boots
Le Song
35
21
0
15 Jul 2016
The Mondrian Kernel
Matej Balog
Balaji Lakshminarayanan
Zoubin Ghahramani
Daniel M. Roy
Yee Whye Teh
16
26
0
16 Jun 2016
Linearized GMM Kernels and Normalized Random Fourier Features
Ping Li
24
9
0
18 May 2016
Additive Approximations in High Dimensional Nonparametric Regression via the SALSA
Kirthevasan Kandasamy
Yaoliang Yu
20
44
0
31 Jan 2016
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
32
32
0
19 Oct 2015
Scan
B
B
B
-Statistic for Kernel Change-Point Detection
Shuang Li
Yao Xie
H. Dai
Le Song
43
106
0
05 Jul 2015
On the Error of Random Fourier Features
Danica J. Sutherland
J. Schneider
30
189
0
09 Jun 2015
A Practical Guide to Randomized Matrix Computations with MATLAB Implementations
Shusen Wang
24
37
0
28 May 2015
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
A. Gretton
N. Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinovic
Z. Szabó
32
33
0
09 Mar 2015
1