Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1407.2697
Cited By
A Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation
10 July 2014
Aaron Defazio
T. Caetano
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation"
11 / 11 papers shown
Title
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Chengjing Wang
Peipei Tang
Wen-Bin He
Meixia Lin
33
0
0
17 Aug 2023
Learning Gaussian Graphical Models with Ordered Weighted L1 Regularization
Cody Mazza-Anthony
Bogdan Mazoure
Mark J. Coates
22
3
0
06 Jun 2019
Learning the effect of latent variables in Gaussian Graphical models with unobserved variables
Marina Vinyes
G. Obozinski
CML
11
2
0
20 Jul 2018
Learning Gaussian Graphical Models Using Discriminated Hub Graphical Lasso
Z. Li
Jingtian Bai
Weilian Zhou
13
1
0
17 May 2017
Structure Learning in Graphical Modeling
Mathias Drton
Marloes H. Maathuis
CML
39
246
0
07 Jun 2016
Network Inference by Learned Node-Specific Degree Prior
Qingming Tang
Lifu Tu
Weiran Wang
Jinbo Xu
13
0
0
07 Feb 2016
Log-Normal Matrix Completion for Large Scale Link Prediction
Brian Mohtashemi
T. Ketseoglou
25
1
0
28 Jan 2016
Learning Nonparametric Forest Graphical Models with Prior Information
Yuancheng Zhu
Zhe Liu
S. Sun
9
2
0
12 Nov 2015
New Optimisation Methods for Machine Learning
Aaron Defazio
41
6
0
09 Oct 2015
Learning Scale-Free Networks by Dynamic Node-Specific Degree Prior
Qingming Tang
S. Sun
Jinbo Xu
32
1
0
07 Mar 2015
Learning Graphical Models With Hubs
Kean Ming Tan
Palma London
Karthika Mohan
Su-In Lee
Maryam Fazel
Daniela Witten
38
98
0
28 Feb 2014
1