ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.1065
  4. Cited By
Phase Retrieval via Wirtinger Flow: Theory and Algorithms

Phase Retrieval via Wirtinger Flow: Theory and Algorithms

3 July 2014
Emmanuel Candes
Xiaodong Li
Mahdi Soltanolkotabi
ArXivPDFHTML

Papers citing "Phase Retrieval via Wirtinger Flow: Theory and Algorithms"

50 / 119 papers shown
Title
Phase retrieval in high dimensions: Statistical and computational phase
  transitions
Phase retrieval in high dimensions: Statistical and computational phase transitions
Antoine Maillard
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
26
57
0
09 Jun 2020
Approximation Schemes for ReLU Regression
Approximation Schemes for ReLU Regression
Ilias Diakonikolas
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
Mahdi Soltanolkotabi
18
51
0
26 May 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled
  Gradient Descent
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
115
0
18 May 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
29
86
0
16 May 2020
High-Dimensional Robust Mean Estimation via Gradient Descent
High-Dimensional Robust Mean Estimation via Gradient Descent
Yu Cheng
Ilias Diakonikolas
Rong Ge
Mahdi Soltanolkotabi
17
31
0
04 May 2020
Inverse Problems, Deep Learning, and Symmetry Breaking
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
72
15
0
20 Mar 2020
Solving Inverse Problems with a Flow-based Noise Model
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
64
36
0
18 Mar 2020
When deep denoising meets iterative phase retrieval
When deep denoising meets iterative phase retrieval
Yaotian Wang
Xiaohang Sun
Jason W. Fleischer
14
18
0
03 Mar 2020
The estimation error of general first order methods
The estimation error of general first order methods
Michael Celentano
Andrea Montanari
Yuchen Wu
16
44
0
28 Feb 2020
An Optimal Statistical and Computational Framework for Generalized
  Tensor Estimation
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
27
65
0
26 Feb 2020
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging
  Problems
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Carola-Bibiane Schönlieb
Hua Huang
21
103
0
22 Feb 2020
Deep S$^3$PR: Simultaneous Source Separation and Phase Retrieval Using
  Deep Generative Models
Deep S3^33PR: Simultaneous Source Separation and Phase Retrieval Using Deep Generative Models
Christopher A. Metzler
Gordon Wetzstein
20
11
0
14 Feb 2020
On the Sample Complexity and Optimization Landscape for Quadratic
  Feasibility Problems
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
24
5
0
04 Feb 2020
A frequency-domain analysis of inexact gradient methods
A frequency-domain analysis of inexact gradient methods
Oran Gannot
24
25
0
31 Dec 2019
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating
  Decreasing Paths to Infinity
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Phase Retrieval Using Conditional Generative Adversarial Networks
Phase Retrieval Using Conditional Generative Adversarial Networks
Tobias Uelwer
Alexander Oberstrass
Stefan Harmeling
GAN
27
25
0
10 Dec 2019
Manifold Gradient Descent Solves Multi-Channel Sparse Blind
  Deconvolution Provably and Efficiently
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
30
26
0
25 Nov 2019
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance
  Sketching
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching
Anru R. Zhang
Yuetian Luo
Garvesh Raskutti
M. Yuan
27
44
0
09 Nov 2019
Denoising and Regularization via Exploiting the Structural Bias of
  Convolutional Generators
Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators
Reinhard Heckel
Mahdi Soltanolkotabi
DiffM
35
81
0
31 Oct 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves
  Non-smooth, Non-convex Phase Retrieval
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
Statistical Analysis of Stationary Solutions of Coupled Nonconvex
  Nonsmooth Empirical Risk Minimization
Statistical Analysis of Stationary Solutions of Coupled Nonconvex Nonsmooth Empirical Risk Minimization
Zhengling Qi
Ying Cui
Yufeng Liu
J. Pang
16
5
0
06 Oct 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
22
29
0
28 Aug 2019
Max-Affine Regression: Provable, Tractable, and Near-Optimal Statistical
  Estimation
Max-Affine Regression: Provable, Tractable, and Near-Optimal Statistical Estimation
Avishek Ghosh
A. Pananjady
Adityanand Guntuboyina
Kannan Ramchandran
17
25
0
21 Jun 2019
Alternating Phase Projected Gradient Descent with Generative Priors for
  Solving Compressive Phase Retrieval
Alternating Phase Projected Gradient Descent with Generative Priors for Solving Compressive Phase Retrieval
Rakib Hyder
Viraj Shah
C. Hegde
Ulugbek S. Kamilov
21
45
0
07 Mar 2019
Analysis of Spectral Methods for Phase Retrieval with Random Orthogonal
  Matrices
Analysis of Spectral Methods for Phase Retrieval with Random Orthogonal Matrices
Rishabh Dudeja
Milad Bakhshizadeh
Junjie Ma
A. Maleki
21
20
0
07 Mar 2019
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex
  Relaxation via Nonconvex Optimization
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
20
128
0
20 Feb 2019
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger
  Flow
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
11
59
0
12 Nov 2018
Quantization-Aware Phase Retrieval
Quantization-Aware Phase Retrieval
Subhadip Mukherjee
C. Seelamantula
MQ
13
2
0
02 Oct 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL
  Property
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
24
23
0
22 Aug 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
97
0
14 Jun 2018
Hypergraph Spectral Clustering in the Weighted Stochastic Block Model
Hypergraph Spectral Clustering in the Weighted Stochastic Block Model
Kwangjun Ahn
Kangwook Lee
Changho Suh
24
62
0
23 May 2018
End-to-end Learning of a Convolutional Neural Network via Deep Tensor
  Decomposition
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition
Samet Oymak
Mahdi Soltanolkotabi
21
12
0
16 May 2018
Stochastic model-based minimization of weakly convex functions
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
33
370
0
17 Mar 2018
prDeep: Robust Phase Retrieval with a Flexible Deep Network
prDeep: Robust Phase Retrieval with a Flexible Deep Network
Christopher A. Metzler
Philip Schniter
Ashok Veeraraghavan
Richard G. Baraniuk
OOD
42
168
0
01 Mar 2018
Non-convex Optimization for Machine Learning
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
33
479
0
21 Dec 2017
Misspecified Nonconvex Statistical Optimization for Phase Retrieval
Misspecified Nonconvex Statistical Optimization for Phase Retrieval
Zhuoran Yang
Lin F. Yang
Ethan X. Fang
T. Zhao
Zhaoran Wang
Matey Neykov
16
15
0
18 Dec 2017
Using Black-box Compression Algorithms for Phase Retrieval
Using Black-box Compression Algorithms for Phase Retrieval
Milad Bakhshizadeh
A. Maleki
S. Jalali
13
8
0
08 Dec 2017
Blind Gain and Phase Calibration via Sparse Spectral Methods
Blind Gain and Phase Calibration via Sparse Spectral Methods
Yanjun Li
Kiryung Lee
Y. Bresler
24
27
0
30 Nov 2017
Theoretical insights into the optimization landscape of
  over-parameterized shallow neural networks
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
36
415
0
16 Jul 2017
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
35
89
0
10 Jul 2017
Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees
Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees
Yan Shuo Tan
Roman Vershynin
16
99
0
30 Jun 2017
Solving Almost all Systems of Random Quadratic Equations
Solving Almost all Systems of Random Quadratic Equations
G. Wang
G. Giannakis
Y. Saad
Jie Chen
34
25
0
29 May 2017
Learning ReLUs via Gradient Descent
Learning ReLUs via Gradient Descent
Mahdi Soltanolkotabi
MLT
23
181
0
10 May 2017
Estimating the Coefficients of a Mixture of Two Linear Regressions by
  Expectation Maximization
Estimating the Coefficients of a Mixture of Two Linear Regressions by Expectation Maximization
Jason M. Klusowski
Dana Yang
W. Brinda
34
41
0
26 Apr 2017
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d)
  Lower Bound for Eigenvector Approximation
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d) Lower Bound for Eigenvector Approximation
Max Simchowitz
A. Alaoui
Benjamin Recht
18
13
0
14 Apr 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
15
126
0
24 Mar 2017
How to Escape Saddle Points Efficiently
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
37
831
0
02 Mar 2017
Phase Transitions of Spectral Initialization for High-Dimensional
  Nonconvex Estimation
Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation
Yue M. Lu
Gen Li
23
89
0
21 Feb 2017
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex
  Matrix Factorization
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization
Xingguo Li
Junwei Lu
R. Arora
Jarvis Haupt
Han Liu
Zhaoran Wang
T. Zhao
43
52
0
29 Dec 2016
Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex
  Relaxation
Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation
S. Bahmani
Justin Romberg
23
120
0
13 Oct 2016
Previous
123
Next