34
8

Using Black-box Compression Algorithms for Phase Retrieval

Abstract

Compressive phase retrieval refers to the problem of recovering a structured nn-dimensional complex-valued vector from its phase-less under-determined linear measurements. The non-linearity of measurements makes designing theoretically-analyzable efficient phase retrieval algorithms challenging. As a result, to a great extent, algorithms designed in this area are developed to take advantage of simple structures such as sparsity and its convex generalizations. The goal of this paper is to move beyond simple models through employing compression codes. Such codes are typically developed to take advantage of complex signal models to represent the signals as efficiently as possible. In this work, it is shown how an existing compression code can be treated as a black box and integrated into an efficient solution for phase retrieval. First, COmpressive PhasE Retrieval (COPER) optimization, a computationally-intensive compression-based phase retrieval method, is proposed. COPER provides a theoretical framework for studying compression-based phase retrieval. The number of measurements required by COPER is connected to κ\kappa, the α\alpha-dimension (closely related to the rate-distortion dimension) of the given family of compression codes. To finds the solution of COPER, an efficient iterative algorithm called gradient descent for COPER (GD-COPER) is proposed. It is proven that under some mild conditions on the initialization, if the number of measurements is larger than Cκ2log2n C \kappa^2 \log^2 n, where CC is a constant, GD-COPER obtains an accurate estimate of the input vector in polynomial time. In the simulation results, JPEG2000 is integrated in GD-COPER to confirm the superb performance of the resulting algorithm on real-world images.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.