ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.7758
  4. Cited By
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian
  Process Hyper-Parameters

Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters

30 June 2014
Ziyun Wang
Nando de Freitas
ArXivPDFHTML

Papers citing "Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters"

41 / 41 papers shown
Title
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds
  Logarithmically Closer to Optimal
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
37
1
0
14 Oct 2024
An Adaptive Dimension Reduction Estimation Method for High-dimensional
  Bayesian Optimization
An Adaptive Dimension Reduction Estimation Method for High-dimensional Bayesian Optimization
Shouri Hu
Jiawei Li
Zhibo Cai
35
1
0
08 Mar 2024
A Unified Gaussian Process for Branching and Nested Hyperparameter
  Optimization
A Unified Gaussian Process for Branching and Nested Hyperparameter Optimization
Jiazhao Zhang
Ying Hung
Chung-Ching Lin
Zicheng Liu
15
0
0
19 Jan 2024
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian
  Regret Bounds
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
Ichiro Takeuchi
34
6
0
07 Nov 2023
A Corrected Expected Improvement Acquisition Function Under Noisy
  Observations
A Corrected Expected Improvement Acquisition Function Under Noisy Observations
Han Zhou
Xingchen Ma
Matthew B Blaschko
12
1
0
08 Oct 2023
Provably Efficient Bayesian Optimization with Unknown Gaussian Process
  Hyperparameter Estimation
Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
Huong Ha
Vu-Linh Nguyen
Hung Tran-The
Hongyu Zhang
Xiuzhen Zhang
Anton Van Den Hengel
28
1
0
12 Jun 2023
Toward $L_\infty$-recovery of Nonlinear Functions: A Polynomial Sample
  Complexity Bound for Gaussian Random Fields
Toward L∞L_\inftyL∞​-recovery of Nonlinear Functions: A Polynomial Sample Complexity Bound for Gaussian Random Fields
Kefan Dong
Tengyu Ma
43
4
0
29 Apr 2023
Rover: An online Spark SQL tuning service via generalized transfer
  learning
Rover: An online Spark SQL tuning service via generalized transfer learning
Yu Shen
Xinyuyang Ren
Yupeng Lu
Huaijun Jiang
Huanyong Xu
Di Peng
Yang Li
Wentao Zhang
Bin Cui
34
10
0
08 Feb 2023
Lifelong Bandit Optimization: No Prior and No Regret
Lifelong Bandit Optimization: No Prior and No Regret
Felix Schur
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
46
3
0
27 Oct 2022
Lower Bounds on the Worst-Case Complexity of Efficient Global
  Optimization
Lower Bounds on the Worst-Case Complexity of Efficient Global Optimization
Wenjie Xu
Yuning Jiang
E. Maddalena
Colin N. Jones
20
9
0
20 Sep 2022
The case for fully Bayesian optimisation in small-sample trials
The case for fully Bayesian optimisation in small-sample trials
Yuji Saikai
27
0
0
30 Aug 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
39
6
0
16 Jul 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in
  Noisy Bayesian Optimization
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
Regret Bounds for Expected Improvement Algorithms in Gaussian Process
  Bandit Optimization
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
13
12
0
15 Mar 2022
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
OffRL
36
6
0
01 Feb 2022
Scaling Gaussian Process Optimization by Evaluating a Few Unique
  Candidates Multiple Times
Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
14
13
0
30 Jan 2022
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
42
0
09 Nov 2021
Open Problem: Tight Online Confidence Intervals for RKHS Elements
Open Problem: Tight Online Confidence Intervals for RKHS Elements
Sattar Vakili
John Scarlett
T. Javidi
23
21
0
28 Oct 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
31
51
0
20 Aug 2021
A Domain-Shrinking based Bayesian Optimization Algorithm with
  Order-Optimal Regret Performance
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
38
33
0
27 Oct 2020
Recursive Two-Step Lookahead Expected Payoff for Time-Dependent Bayesian
  Optimization
Recursive Two-Step Lookahead Expected Payoff for Time-Dependent Bayesian Optimization
Sudharshan Ashwin Renganathan
Jeffrey Larson
Stefan M. Wild
8
2
0
14 Jun 2020
Randomised Gaussian Process Upper Confidence Bound for Bayesian
  Optimisation
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation
Julian Berk
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
18
38
0
08 Jun 2020
Regret and Belief Complexity Trade-off in Gaussian Process Bandits via
  Information Thresholding
Regret and Belief Complexity Trade-off in Gaussian Process Bandits via Information Thresholding
Amrit Singh Bedi
Dheeraj Peddireddy
Vaneet Aggarwal
Brian M. Sadler
Alec Koppel
6
1
0
23 Mar 2020
$ε$-shotgun: $ε$-greedy Batch Bayesian Optimisation
εεε-shotgun: εεε-greedy Batch Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
Alma A. M. Rahat
29
15
0
05 Feb 2020
Greed is Good: Exploration and Exploitation Trade-offs in Bayesian
  Optimisation
Greed is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation
George De Ath
Richard Everson
Alma A. M. Rahat
J. Fieldsend
25
94
0
28 Nov 2019
Evolving Gaussian Process kernels from elementary mathematical
  expressions
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
19
3
0
11 Oct 2019
Bayesian Optimization for Iterative Learning
Bayesian Optimization for Iterative Learning
Vu-Linh Nguyen
Sebastian Schulze
Michael A. Osborne
BDL
8
32
0
20 Sep 2019
An iterative scheme for feature based positioning using a weighted
  dissimilarity measure
An iterative scheme for feature based positioning using a weighted dissimilarity measure
Caifa Zhou
A. Wieser
21
1
0
20 May 2019
Knowing The What But Not The Where in Bayesian Optimization
Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen
Michael A. Osborne
20
37
0
07 May 2019
Fully Distributed Bayesian Optimization with Stochastic Policies
Fully Distributed Bayesian Optimization with Stochastic Policies
Javier Garcia-Barcos
Ruben Martinez-Cantin
OffRL
14
14
0
26 Feb 2019
No-Regret Bayesian Optimization with Unknown Hyperparameters
No-Regret Bayesian Optimization with Unknown Hyperparameters
Felix Berkenkamp
Angela P. Schoellig
Andreas Krause
TPM
23
72
0
10 Jan 2019
Regret bounds for meta Bayesian optimization with an unknown Gaussian
  process prior
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
Zi Wang
Beomjoon Kim
L. Kaelbling
27
54
0
23 Nov 2018
Practical Batch Bayesian Optimization for Less Expensive Functions
Practical Batch Bayesian Optimization for Less Expensive Functions
Vu Nguyen
Sunil R. Gupta
Santu Rana
Cheng Li
Svetha Venkatesh
19
3
0
05 Nov 2018
PARyOpt: A software for Parallel Asynchronous Remote Bayesian
  Optimization
PARyOpt: A software for Parallel Asynchronous Remote Bayesian Optimization
B. Pokuri
Alec Lofquist
C. Risko
Baskar Ganapathysubramanian
11
10
0
12 Sep 2018
Streaming kernel regression with provably adaptive mean, variance, and
  regularization
Streaming kernel regression with provably adaptive mean, variance, and regularization
A. Durand
Odalric-Ambrym Maillard
Joelle Pineau
21
44
0
02 Aug 2017
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization
Jonathan Scarlett
Ilija Bogunovic
V. Cevher
25
99
0
31 May 2017
Learning to Learn without Gradient Descent by Gradient Descent
Learning to Learn without Gradient Descent by Gradient Descent
Yutian Chen
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
21
42
0
11 Nov 2016
Funneled Bayesian Optimization for Design, Tuning and Control of
  Autonomous Systems
Funneled Bayesian Optimization for Design, Tuning and Control of Autonomous Systems
Ruben Martinez-Cantin
21
42
0
02 Oct 2016
Heteroscedastic Treed Bayesian Optimisation
Heteroscedastic Treed Bayesian Optimisation
Yannis Assael
Ziyun Wang
Bobak Shahriari
Nando de Freitas
41
48
0
27 Oct 2014
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
80
95
0
27 Feb 2014
1