ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.4178
  4. Cited By
Speeding Up MCMC by Efficient Data Subsampling

Speeding Up MCMC by Efficient Data Subsampling

16 April 2014
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
ArXivPDFHTML

Papers citing "Speeding Up MCMC by Efficient Data Subsampling"

35 / 35 papers shown
Title
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Conor Rosato
Harvinder Lehal
Simon Maskell
L. Devlin
Malcolm Strens
19
0
0
15 May 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
74
13
0
03 Jan 2025
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
32
4
0
25 Oct 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
31
5
0
14 Jun 2023
Incorporating Subsampling into Bayesian Models for High-Dimensional
  Spatial Data
Incorporating Subsampling into Bayesian Models for High-Dimensional Spatial Data
Saumajit Saha
J. Bradley
27
5
0
22 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Particle Mean Field Variational Bayes
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
32
3
0
24 Mar 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
28
0
0
18 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
26
4
0
20 Nov 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
35
15
0
01 Aug 2022
An optimal transport approach for selecting a representative subsample
  with application in efficient kernel density estimation
An optimal transport approach for selecting a representative subsample with application in efficient kernel density estimation
Jingyi Zhang
Cheng Meng
Jun Yu
Mengrui Zhang
Wenxuan Zhong
Ping Ma
OT
29
12
0
31 May 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Optimality in Noisy Importance Sampling
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
39
5
0
07 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
33
9
0
30 May 2021
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC
  via Variance Reduction
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
33
8
0
02 Oct 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
24
37
0
23 May 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
27
10
0
25 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
Bayesian inference using synthetic likelihood: asymptotics and
  adjustments
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
23
40
0
13 Feb 2019
New models for symbolic data analysis
New models for symbolic data analysis
B. Beranger
Huan-xiang Lin
Scott A. Sisson
21
25
0
11 Sep 2018
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
Liangliang Wang
Shijia Wang
Alexandre Bouchard-Coté
18
32
0
22 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
20
26
0
07 Jun 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
19
49
0
08 May 2018
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
29
62
0
02 Aug 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
33
14
0
26 Jun 2017
Stochastic Bouncy Particle Sampler
Stochastic Bouncy Particle Sampler
Ari Pakman
D. Gilboa
David Carlson
Liam Paninski
16
32
0
03 Sep 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
22
49
0
27 May 2016
Statistical Methods and Computing for Big Data
Statistical Methods and Computing for Big Data
Chun Wang
Ming-Hui Chen
E. Schifano
Jing Wu
Jun Yan
35
128
0
27 Feb 2015
Coupled MCMC with a randomized acceptance probability
Coupled MCMC with a randomized acceptance probability
Geoff K. Nicholls
C. Fox
Alexis Muir Watt
48
41
0
30 May 2012
1