Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1404.4178
Cited By
Speeding Up MCMC by Efficient Data Subsampling
16 April 2014
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Speeding Up MCMC by Efficient Data Subsampling"
35 / 35 papers shown
Title
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Conor Rosato
Harvinder Lehal
Simon Maskell
L. Devlin
Malcolm Strens
19
0
0
15 May 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
74
13
0
03 Jan 2025
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
32
4
0
25 Oct 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
31
5
0
14 Jun 2023
Incorporating Subsampling into Bayesian Models for High-Dimensional Spatial Data
Saumajit Saha
J. Bradley
27
5
0
22 May 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
32
3
0
24 Mar 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
28
0
0
18 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
26
4
0
20 Nov 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
35
15
0
01 Aug 2022
An optimal transport approach for selecting a representative subsample with application in efficient kernel density estimation
Jingyi Zhang
Cheng Meng
Jun Yu
Mengrui Zhang
Wenxuan Zhong
Ping Ma
OT
29
12
0
31 May 2022
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
39
5
0
07 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
33
9
0
30 May 2021
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
33
8
0
02 Oct 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
24
37
0
23 May 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
27
10
0
25 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
23
40
0
13 Feb 2019
New models for symbolic data analysis
B. Beranger
Huan-xiang Lin
Scott A. Sisson
21
25
0
11 Sep 2018
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
Liangliang Wang
Shijia Wang
Alexandre Bouchard-Coté
18
32
0
22 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
20
26
0
07 Jun 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
19
49
0
08 May 2018
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
29
62
0
02 Aug 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
33
14
0
26 Jun 2017
Stochastic Bouncy Particle Sampler
Ari Pakman
D. Gilboa
David Carlson
Liam Paninski
16
32
0
03 Sep 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
22
49
0
27 May 2016
Statistical Methods and Computing for Big Data
Chun Wang
Ming-Hui Chen
E. Schifano
Jing Wu
Jun Yan
35
128
0
27 Feb 2015
Coupled MCMC with a randomized acceptance probability
Geoff K. Nicholls
C. Fox
Alexis Muir Watt
48
41
0
30 May 2012
1