ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.0736
  4. Cited By
Exploiting Linear Structure Within Convolutional Networks for Efficient
  Evaluation

Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation

2 April 2014
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
    FAtt
ArXivPDFHTML

Papers citing "Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation"

14 / 14 papers shown
Title
Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement
Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement
H. Kim
Jaejun Yoo
83
0
0
23 Dec 2024
Task Singular Vectors: Reducing Task Interference in Model Merging
Task Singular Vectors: Reducing Task Interference in Model Merging
Antonio Andrea Gargiulo
Donato Crisostomi
Maria Sofia Bucarelli
Simone Scardapane
Fabrizio Silvestri
Emanuele Rodolà
MoMe
119
14
0
26 Nov 2024
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Akira Ito
Masanori Yamada
Atsutoshi Kumagai
MoMe
83
5
0
06 Feb 2024
Stable Low-rank Tensor Decomposition for Compression of Convolutional
  Neural Network
Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network
Anh-Huy Phan
Konstantin Sobolev
Konstantin Sozykin
Dmitry Ermilov
Julia Gusak
P. Tichavský
Valeriy Glukhov
Ivan Oseledets
A. Cichocki
BDL
44
129
0
12 Aug 2020
Memory-Efficient Global Refinement of Decision-Tree Ensembles and its
  Application to Face Alignment
Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment
Nenad Markuš
Ivan Gogić
Igor S. Pandzic
Jörgen Ahlberg
CVBM
35
1
0
27 Feb 2017
Deep Learning with Low Precision by Half-wave Gaussian Quantization
Deep Learning with Low Precision by Half-wave Gaussian Quantization
Zhaowei Cai
Xiaodong He
Jian Sun
Nuno Vasconcelos
MQ
107
504
0
03 Feb 2017
Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets
Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets
Manuel Amthor
E. Rodner
Joachim Denzler
51
17
0
10 Oct 2016
Speeding up Convolutional Neural Networks with Low Rank Expansions
Speeding up Convolutional Neural Networks with Low Rank Expansions
Max Jaderberg
Andrea Vedaldi
Andrew Zisserman
123
1,458
0
15 May 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
120
4,999
0
21 Dec 2013
Fast Training of Convolutional Networks through FFTs
Fast Training of Convolutional Networks through FFTs
Michaël Mathieu
Mikael Henaff
Yann LeCun
95
607
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
289
15,825
0
12 Nov 2013
Predicting Parameters in Deep Learning
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
132
1,314
0
03 Jun 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
371
7,650
0
03 Jul 2012
Building high-level features using large scale unsupervised learning
Building high-level features using large scale unsupervised learning
Quoc V. Le
MarcÁurelio Ranzato
R. Monga
M. Devin
Kai Chen
G. Corrado
J. Dean
A. Ng
SSL
OffRL
CVBM
79
2,268
0
29 Dec 2011
1