ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02850
11
17

Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets

10 October 2016
Manuel Amthor
E. Rodner
Joachim Denzler
ArXivPDFHTML
Abstract

We propose Impatient Deep Neural Networks (DNNs) which deal with dynamic time budgets during application. They allow for individual budgets given a priori for each test example and for anytime prediction, i.e., a possible interruption at multiple stages during inference while still providing output estimates. Our approach can therefore tackle the computational costs and energy demands of DNNs in an adaptive manner, a property essential for real-time applications. Our Impatient DNNs are based on a new general framework of learning dynamic budget predictors using risk minimization, which can be applied to current DNN architectures by adding early prediction and additional loss layers. A key aspect of our method is that all of the intermediate predictors are learned jointly. In experiments, we evaluate our approach for different budget distributions, architectures, and datasets. Our results show a significant gain in expected accuracy compared to common baselines.

View on arXiv
Comments on this paper