ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.0541
  4. Cited By
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High
  Dimensions With the TREX

Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX

2 April 2014
Johannes Lederer
Christian L. Müller
ArXivPDFHTML

Papers citing "Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX"

11 / 11 papers shown
Title
Optimal tuning-free convex relaxation for noisy matrix completion
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
28
8
0
12 Jul 2022
A Survey of Tuning Parameter Selection for High-dimensional Regression
A Survey of Tuning Parameter Selection for High-dimensional Regression
Y. Wu
Lan Wang
48
35
0
10 Aug 2019
Stability selection enables robust learning of partial differential
  equations from limited noisy data
Stability selection enables robust learning of partial differential equations from limited noisy data
Suryanarayana Maddu
B. Cheeseman
I. Sbalzarini
Christian L. Müller
18
20
0
17 Jul 2019
Fast, Parameter free Outlier Identification for Robust PCA
Fast, Parameter free Outlier Identification for Robust PCA
V. Menon
Sheetal Kalyani
35
2
0
13 Apr 2018
Inference for high-dimensional instrumental variables regression
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
30
37
0
18 Aug 2017
Generalized Concomitant Multi-Task Lasso for sparse multimodal
  regression
Generalized Concomitant Multi-Task Lasso for sparse multimodal regression
Mathurin Massias
Olivier Fercoq
Alexandre Gramfort
Joseph Salmon
51
23
0
27 May 2017
Balancing Statistical and Computational Precision: A General Theory and
  Applications to Sparse Regression
Balancing Statistical and Computational Precision: A General Theory and Applications to Sparse Regression
Mahsa Taheri
Néhémy Lim
Johannes Lederer
33
3
0
23 Sep 2016
Oracle Inequalities for High-dimensional Prediction
Oracle Inequalities for High-dimensional Prediction
Johannes Lederer
Lu Yu
Irina Gaynanova
34
24
0
01 Aug 2016
Non-convex Global Minimization and False Discovery Rate Control for the
  TREX
Non-convex Global Minimization and False Discovery Rate Control for the TREX
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
17
22
0
22 Apr 2016
Optimal Two-Step Prediction in Regression
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
42
19
0
18 Oct 2014
Sparse and compositionally robust inference of microbial ecological
  networks
Sparse and compositionally robust inference of microbial ecological networks
Zachary D. Kurtz
Christian L. Müller
Emily R. Miraldi
D. Littman
M. Blaser
Richard Bonneau
37
1,226
0
18 Aug 2014
1