Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1404.0541
Cited By
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX
2 April 2014
Johannes Lederer
Christian L. Müller
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX"
11 / 11 papers shown
Title
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
28
8
0
12 Jul 2022
A Survey of Tuning Parameter Selection for High-dimensional Regression
Y. Wu
Lan Wang
48
35
0
10 Aug 2019
Stability selection enables robust learning of partial differential equations from limited noisy data
Suryanarayana Maddu
B. Cheeseman
I. Sbalzarini
Christian L. Müller
18
20
0
17 Jul 2019
Fast, Parameter free Outlier Identification for Robust PCA
V. Menon
Sheetal Kalyani
33
2
0
13 Apr 2018
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
30
37
0
18 Aug 2017
Generalized Concomitant Multi-Task Lasso for sparse multimodal regression
Mathurin Massias
Olivier Fercoq
Alexandre Gramfort
Joseph Salmon
51
23
0
27 May 2017
Balancing Statistical and Computational Precision: A General Theory and Applications to Sparse Regression
Mahsa Taheri
Néhémy Lim
Johannes Lederer
33
3
0
23 Sep 2016
Oracle Inequalities for High-dimensional Prediction
Johannes Lederer
Lu Yu
Irina Gaynanova
34
24
0
01 Aug 2016
Non-convex Global Minimization and False Discovery Rate Control for the TREX
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
17
22
0
22 Apr 2016
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
42
19
0
18 Oct 2014
Sparse and compositionally robust inference of microbial ecological networks
Zachary D. Kurtz
Christian L. Müller
Emily R. Miraldi
D. Littman
M. Blaser
Richard Bonneau
37
1,226
0
18 Aug 2014
1