ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.5693
  4. Cited By
Firefly Monte Carlo: Exact MCMC with Subsets of Data

Firefly Monte Carlo: Exact MCMC with Subsets of Data

22 March 2014
D. Maclaurin
Ryan P. Adams
ArXivPDFHTML

Papers citing "Firefly Monte Carlo: Exact MCMC with Subsets of Data"

32 / 32 papers shown
Title
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Conor Rosato
Harvinder Lehal
Simon Maskell
L. Devlin
Malcolm Strens
19
0
0
15 May 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
32
4
0
25 Oct 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
28
0
0
18 Dec 2022
Large Language Models Are Human-Level Prompt Engineers
Large Language Models Are Human-Level Prompt Engineers
Yongchao Zhou
Andrei Ioan Muresanu
Ziwen Han
Keiran Paster
Silviu Pitis
Harris Chan
Jimmy Ba
ALM
LLMAG
21
834
0
03 Nov 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
23
154
0
25 Jul 2021
Mitigating belief projection in explainable artificial intelligence via
  Bayesian Teaching
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
16
42
0
07 Feb 2021
Minibatch Gibbs Sampling on Large Graphical Models
Minibatch Gibbs Sampling on Large Graphical Models
Christopher De Sa
Vincent Chen
W. Wong
26
19
0
15 Jun 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
24
32
0
26 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
31
62
0
02 Aug 2017
Mini-batch Tempered MCMC
Mini-batch Tempered MCMC
Dangna Li
W. Wong
26
5
0
31 Jul 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
33
14
0
26 Jun 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
30
101
0
16 Jun 2017
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
33
18
0
12 Sep 2016
Stochastic Bouncy Particle Sampler
Stochastic Bouncy Particle Sampler
Ari Pakman
D. Gilboa
David Carlson
Liam Paninski
16
32
0
03 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,069
0
16 Aug 2016
Learning Combinatorial Functions from Pairwise Comparisons
Learning Combinatorial Functions from Pairwise Comparisons
Maria-Florina Balcan
Aaron Smith
Colin White
20
25
0
30 May 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
22
49
0
27 May 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
24
217
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
49
29
0
20 May 2016
Simple, Scalable and Accurate Posterior Interval Estimation
Simple, Scalable and Accurate Posterior Interval Estimation
Cheng Li
Sanvesh Srivastava
David B. Dunson
16
54
0
13 May 2016
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Coté
Sebastian J. Vollmer
Arnaud Doucet
29
235
0
08 Oct 2015
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
Yutian Chen
Zoubin Ghahramani
32
16
0
30 Jun 2015
Parallelizing MCMC with Random Partition Trees
Parallelizing MCMC with Random Partition Trees
Xiangyu Wang
Fangjian Guo
Katherine A. Heller
David B. Dunson
32
75
0
10 Jun 2015
Provable Bayesian Inference via Particle Mirror Descent
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
36
70
0
09 Jun 2015
Variational consensus Monte Carlo
Variational consensus Monte Carlo
Maxim Rabinovich
E. Angelino
Michael I. Jordan
29
50
0
09 Jun 2015
Statistical Methods and Computing for Big Data
Statistical Methods and Computing for Big Data
Chun Wang
Ming-Hui Chen
E. Schifano
Jing Wu
Jun Yan
38
128
0
27 Feb 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
24
31
0
22 Jan 2015
On nonnegative unbiased estimators
On nonnegative unbiased estimators
Pierre E. Jacob
Alexandre Hoang Thiery
48
67
0
25 Sep 2013
1