ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.5341
  4. Cited By
An Information-Theoretic Analysis of Thompson Sampling

An Information-Theoretic Analysis of Thompson Sampling

21 March 2014
Daniel Russo
Benjamin Van Roy
ArXivPDFHTML

Papers citing "An Information-Theoretic Analysis of Thompson Sampling"

50 / 81 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
94
1
0
29 Apr 2025
An Information-Theoretic Analysis of Thompson Sampling with Infinite Action Spaces
An Information-Theoretic Analysis of Thompson Sampling with Infinite Action Spaces
Amaury Gouverneur
Borja Rodríguez Gálvez
T. Oechtering
Mikael Skoglund
66
0
0
04 Feb 2025
Distributed Thompson sampling under constrained communication
Distributed Thompson sampling under constrained communication
Saba Zerefa
Zhaolin Ren
Haitong Ma
Na Li
46
1
0
03 Jan 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
114
2
0
29 Oct 2024
Advances in Preference-based Reinforcement Learning: A Review
Advances in Preference-based Reinforcement Learning: A Review
Youssef Abdelkareem
Shady Shehata
Fakhri Karray
OffRL
56
10
0
21 Aug 2024
On Bits and Bandits: Quantifying the Regret-Information Trade-off
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
40
0
0
26 May 2024
Incentivized Exploration via Filtered Posterior Sampling
Incentivized Exploration via Filtered Posterior Sampling
Anand Kalvit
Aleksandrs Slivkins
Yonatan Gur
29
1
0
20 Feb 2024
Posterior Sampling-based Online Learning for Episodic POMDPs
Posterior Sampling-based Online Learning for Episodic POMDPs
Dengwang Tang
Dongze Ye
Rahul Jain
A. Nayyar
Pierluigi Nuzzo
OffRL
57
0
0
16 Oct 2023
VITS : Variational Inference Thompson Sampling for contextual bandits
VITS : Variational Inference Thompson Sampling for contextual bandits
Pierre Clavier
Tom Huix
Alain Durmus
32
3
0
19 Jul 2023
Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits
Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits
Yuwei Luo
Mohsen Bayati
26
1
0
26 Jun 2023
Sequential Best-Arm Identification with Application to Brain-Computer
  Interface
Sequential Best-Arm Identification with Application to Brain-Computer Interface
Xiaoping Zhou
Botao Hao
Jian Kang
Tor Lattimore
Lexin Li
35
2
0
17 May 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
39
8
0
05 May 2023
Optimal tests following sequential experiments
Optimal tests following sequential experiments
Karun Adusumilli
36
2
0
30 Apr 2023
Thompson Sampling Regret Bounds for Contextual Bandits with sub-Gaussian
  rewards
Thompson Sampling Regret Bounds for Contextual Bandits with sub-Gaussian rewards
Amaury Gouverneur
Borja Rodríguez Gálvez
T. Oechtering
Mikael Skoglund
29
4
0
26 Apr 2023
Simulating Gaussian vectors via randomized dimension reduction and PCA
Simulating Gaussian vectors via randomized dimension reduction and PCA
N. Kahalé
35
0
0
14 Apr 2023
Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top exploration
Evaluating COVID-19 vaccine allocation policies using Bayesian mmm-top exploration
Alexandra Cimpean
T. Verstraeten
L. Willem
N. Hens
Ann Nowé
Pieter J. K. Libin
26
2
0
30 Jan 2023
STEERING: Stein Information Directed Exploration for Model-Based
  Reinforcement Learning
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
8
0
28 Jan 2023
Bayesian Fixed-Budget Best-Arm Identification
Bayesian Fixed-Budget Best-Arm Identification
Alexia Atsidakou
S. Katariya
Sujay Sanghavi
Branislav Kveton
35
11
0
15 Nov 2022
AdaChain: A Learned Adaptive Blockchain
AdaChain: A Learned Adaptive Blockchain
Chenyuan Wu
Bhavana Mehta
Mohammad Javad Amiri
Ryan Marcus
B. T. Loo
23
14
0
03 Nov 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
  Learning
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
36
4
0
30 Oct 2022
Quantification before Selection: Active Dynamics Preference for Robust
  Reinforcement Learning
Quantification before Selection: Active Dynamics Preference for Robust Reinforcement Learning
Kang Xu
Yan Ma
Wei Li
48
0
0
23 Sep 2022
Batch Bayesian optimisation via density-ratio estimation with guarantees
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
49
7
0
22 Sep 2022
Thompson Sampling with Virtual Helping Agents
Thompson Sampling with Virtual Helping Agents
Kartikey Pant
Amod Hegde
K. V. Srinivas
22
0
0
16 Sep 2022
Sample-efficient Safe Learning for Online Nonlinear Control with Control
  Barrier Functions
Sample-efficient Safe Learning for Online Nonlinear Control with Control Barrier Functions
Wenhao Luo
Wen Sun
Ashish Kapoor
OffRL
48
9
0
29 Jul 2022
Adaptive Sampling for Discovery
Adaptive Sampling for Discovery
Ziping Xu
Eunjae Shim
Ambuj Tewari
Paul M. Zimmerman
OffRL
22
4
0
30 May 2022
Lifting the Information Ratio: An Information-Theoretic Analysis of
  Thompson Sampling for Contextual Bandits
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
41
16
0
27 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
28
19
0
04 May 2022
An Analysis of Ensemble Sampling
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
37
21
0
02 Mar 2022
Partial Likelihood Thompson Sampling
Partial Likelihood Thompson Sampling
Han Wu
Stefan Wager
LM&MA
35
1
0
02 Mar 2022
Thompson Sampling with Unrestricted Delays
Thompson Sampling with Unrestricted Delays
Hang Wu
Stefan Wager
42
7
0
24 Feb 2022
Adaptive Experimentation in the Presence of Exogenous Nonstationary
  Variation
Adaptive Experimentation in the Presence of Exogenous Nonstationary Variation
Chao Qin
Daniel Russo
60
6
0
18 Feb 2022
Fast online inference for nonlinear contextual bandit based on
  Generative Adversarial Network
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
51
5
0
17 Feb 2022
Deep Hierarchy in Bandits
Deep Hierarchy in Bandits
Joey Hong
Branislav Kveton
S. Katariya
Manzil Zaheer
Mohammad Ghavamzadeh
33
20
0
03 Feb 2022
Gaussian Imagination in Bandit Learning
Gaussian Imagination in Bandit Learning
Yueyang Liu
Adithya M. Devraj
Benjamin Van Roy
Kuang Xu
40
7
0
06 Jan 2022
Hierarchical Bayesian Bandits
Hierarchical Bayesian Bandits
Joey Hong
Branislav Kveton
Manzil Zaheer
Mohammad Ghavamzadeh
FedML
52
38
0
12 Nov 2021
The Value of Information When Deciding What to Learn
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
37
12
0
26 Oct 2021
Feel-Good Thompson Sampling for Contextual Bandits and Reinforcement
  Learning
Feel-Good Thompson Sampling for Contextual Bandits and Reinforcement Learning
Tong Zhang
27
63
0
02 Oct 2021
Apple Tasting Revisited: Bayesian Approaches to Partially Monitored
  Online Binary Classification
Apple Tasting Revisited: Bayesian Approaches to Partially Monitored Online Binary Classification
James A. Grant
David S. Leslie
47
3
0
29 Sep 2021
A Payload Optimization Method for Federated Recommender Systems
A Payload Optimization Method for Federated Recommender Systems
Farwa K. Khan
Adrian Flanagan
K. E. Tan
Z. Alamgir
Muhammad Ammad-ud-din
82
30
0
27 Jul 2021
Metalearning Linear Bandits by Prior Update
Metalearning Linear Bandits by Prior Update
Amit Peleg
Naama Pearl
Ron Meir
42
18
0
12 Jul 2021
Bayesian decision-making under misspecified priors with applications to
  meta-learning
Bayesian decision-making under misspecified priors with applications to meta-learning
Max Simchowitz
Christopher Tosh
A. Krishnamurthy
Daniel J. Hsu
Thodoris Lykouris
Miroslav Dudík
Robert Schapire
42
49
0
03 Jul 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
33
7
0
30 Jun 2021
Online Transfer Learning: Negative Transfer and Effect of Prior
  Knowledge
Online Transfer Learning: Negative Transfer and Effect of Prior Knowledge
Xuetong Wu
J. Manton
U. Aickelin
Jingge Zhu
CLL
OnRL
34
7
0
04 May 2021
An Information-Theoretic Perspective on Credit Assignment in
  Reinforcement Learning
An Information-Theoretic Perspective on Credit Assignment in Reinforcement Learning
Dilip Arumugam
Peter Henderson
Pierre-Luc Bacon
24
17
0
10 Mar 2021
Constrained Contextual Bandit Learning for Adaptive Radar Waveform
  Selection
Constrained Contextual Bandit Learning for Adaptive Radar Waveform Selection
C. Thornton
R. M. Buehrer
A. Martone
22
21
0
09 Mar 2021
Reinforcement Learning, Bit by Bit
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
30
70
0
06 Mar 2021
Online Multi-Armed Bandits with Adaptive Inference
Online Multi-Armed Bandits with Adaptive Inference
Maria Dimakopoulou
Zhimei Ren
Zhengyuan Zhou
35
34
0
25 Feb 2021
The Elliptical Potential Lemma for General Distributions with an
  Application to Linear Thompson Sampling
The Elliptical Potential Lemma for General Distributions with an Application to Linear Thompson Sampling
N. Hamidi
Mohsen Bayati
22
1
0
16 Feb 2021
Uncertainty quantification and exploration-exploitation trade-off in
  humans
Uncertainty quantification and exploration-exploitation trade-off in humans
Antonio Candelieri
Andrea Ponti
Francesco Archetti
21
4
0
05 Feb 2021
An empirical evaluation of active inference in multi-armed bandits
An empirical evaluation of active inference in multi-armed bandits
D. Marković
Hrvoje Stojić
Sarah Schwöbel
S. Kiebel
46
34
0
21 Jan 2021
12
Next