ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.0628
  4. Cited By
Unconstrained Online Linear Learning in Hilbert Spaces: Minimax
  Algorithms and Normal Approximations

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

3 March 2014
H. B. McMahan
Francesco Orabona
ArXivPDFHTML

Papers citing "Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations"

20 / 20 papers shown
Title
Fast TRAC: A Parameter-Free Optimizer for Lifelong Reinforcement
  Learning
Fast TRAC: A Parameter-Free Optimizer for Lifelong Reinforcement Learning
Aneesh Muppidi
Zhiyu Zhang
Heng Yang
39
4
0
26 May 2024
How Free is Parameter-Free Stochastic Optimization?
How Free is Parameter-Free Stochastic Optimization?
Amit Attia
Tomer Koren
ODL
47
5
0
05 Feb 2024
Parameter-free projected gradient descent
Parameter-free projected gradient descent
Evgenii Chzhen
Christophe Giraud
Gilles Stoltz
26
4
0
31 May 2023
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
  High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises: High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Zijian Liu
Zhengyuan Zhou
35
10
0
22 Mar 2023
Unconstrained Dynamic Regret via Sparse Coding
Unconstrained Dynamic Regret via Sparse Coding
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
39
7
0
31 Jan 2023
Learning-Rate-Free Learning by D-Adaptation
Learning-Rate-Free Learning by D-Adaptation
Aaron Defazio
Konstantin Mishchenko
35
77
0
18 Jan 2023
Exploiting the Curvature of Feasible Sets for Faster Projection-Free
  Online Learning
Exploiting the Curvature of Feasible Sets for Faster Projection-Free Online Learning
Zakaria Mhammedi
23
8
0
23 May 2022
Making SGD Parameter-Free
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
25
43
0
04 May 2022
Corralling a Larger Band of Bandits: A Case Study on Switching Regret
  for Linear Bandits
Corralling a Larger Band of Bandits: A Case Study on Switching Regret for Linear Bandits
Haipeng Luo
Mengxiao Zhang
Peng Zhao
Zhi-Hua Zhou
34
17
0
12 Feb 2022
Parameter-free Online Linear Optimization with Side Information via
  Universal Coin Betting
Parameter-free Online Linear Optimization with Side Information via Universal Coin Betting
Jeonghun Ryu
Alankrita Bhatt
Young-Han Kim
26
1
0
04 Feb 2022
PDE-Based Optimal Strategy for Unconstrained Online Learning
PDE-Based Optimal Strategy for Unconstrained Online Learning
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
19
25
0
19 Jan 2022
Tight Concentrations and Confidence Sequences from the Regret of
  Universal Portfolio
Tight Concentrations and Confidence Sequences from the Regret of Universal Portfolio
Francesco Orabona
Kwang-Sung Jun
55
39
0
27 Oct 2021
Online Learning with Imperfect Hints
Online Learning with Imperfect Hints
Aditya Bhaskara
Ashok Cutkosky
Ravi Kumar
Manish Purohit
30
58
0
11 Feb 2020
Matrix-Free Preconditioning in Online Learning
Matrix-Free Preconditioning in Online Learning
Ashok Cutkosky
Tamás Sarlós
ODL
32
16
0
29 May 2019
Parameter-free online learning via model selection
Parameter-free online learning via model selection
Dylan J. Foster
Satyen Kale
M. Mohri
Karthik Sridharan
32
59
0
30 Dec 2017
Tight Lower Bounds for Multiplicative Weights Algorithmic Families
Tight Lower Bounds for Multiplicative Weights Algorithmic Families
N. Gravin
Yuval Peres
Balasubramanian Sivan
21
16
0
11 Jul 2016
Scale-Free Online Learning
Scale-Free Online Learning
Francesco Orabona
D. Pál
15
102
0
08 Jan 2016
Achieving All with No Parameters: Adaptive NormalHedge
Achieving All with No Parameters: Adaptive NormalHedge
Haipeng Luo
Robert Schapire
ODL
31
18
0
20 Feb 2015
Towards Optimal Algorithms for Prediction with Expert Advice
Towards Optimal Algorithms for Prediction with Expert Advice
N. Gravin
Yuval Peres
Balasubramanian Sivan
29
45
0
10 Sep 2014
Simultaneous Model Selection and Optimization through Parameter-free
  Stochastic Learning
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
Francesco Orabona
51
102
0
15 Jun 2014
1