ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19605
24
4

Parameter-free projected gradient descent

31 May 2023
Evgenii Chzhen
Christophe Giraud
Gilles Stoltz
ArXivPDFHTML
Abstract

We consider the problem of minimizing a convex function over a closed convex set, with Projected Gradient Descent (PGD). We propose a fully parameter-free version of AdaGrad, which is adaptive to the distance between the initialization and the optimum, and to the sum of the square norm of the subgradients. Our algorithm is able to handle projection steps, does not involve restarts, reweighing along the trajectory or additional gradient evaluations compared to the classical PGD. It also fulfills optimal rates of convergence for cumulative regret up to logarithmic factors. We provide an extension of our approach to stochastic optimization and conduct numerical experiments supporting the developed theory.

View on arXiv
Comments on this paper