Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.0635
Cited By
Generalization and Exploration via Randomized Value Functions
4 February 2014
Ian Osband
Benjamin Van Roy
Zheng Wen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization and Exploration via Randomized Value Functions"
46 / 96 papers shown
Title
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play
Qinghua Liu
Tiancheng Yu
Yu Bai
Chi Jin
41
121
0
04 Oct 2020
Is Q-Learning Provably Efficient? An Extended Analysis
Kushagra Rastogi
Jonathan Lee
Fabrice Harel-Canada
Aditya Sunil Joglekar
OffRL
19
1
0
22 Sep 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
41
64
0
18 Aug 2020
Single-partition adaptive Q-learning
J. Araújo
Mário A. T. Figueiredo
M. Botto
OffRL
25
2
0
14 Jul 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
30
201
0
09 Jul 2020
Near-Optimal Reinforcement Learning with Self-Play
Yunru Bai
Chi Jin
Tiancheng Yu
29
130
0
22 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
83
0
15 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
62
300
0
01 Jun 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
46
125
0
17 Feb 2020
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai
Chi Jin
SSL
32
149
0
10 Feb 2020
Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos
Alexander R. Trott
Caiming Xiong
R. Socher
Xavier Giró-i-Nieto
Jordi Torres
OffRL
19
151
0
10 Feb 2020
Adaptive Approximate Policy Iteration
Botao Hao
N. Lazić
Yasin Abbasi-Yadkori
Pooria Joulani
Csaba Szepesvári
18
14
0
08 Feb 2020
Making Sense of Reinforcement Learning and Probabilistic Inference
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
37
48
0
03 Jan 2020
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
24
68
0
24 Nov 2019
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Hiteshi Sharma
R. Jain
109
104
0
15 Oct 2019
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
29
100
0
23 Sep 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
57
546
0
11 Jul 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
32
8
0
10 Jun 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
40
96
0
23 May 2019
A Bayesian Approach to Robust Reinforcement Learning
E. Derman
D. Mankowitz
Timothy A. Mann
Shie Mannor
28
58
0
20 May 2019
Context-Dependent Upper-Confidence Bounds for Directed Exploration
Raksha Kumaraswamy
M. Schlegel
Adam White
Martha White
OffRL
31
12
0
15 Nov 2018
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
30
141
0
07 Nov 2018
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
65
51
0
15 Oct 2018
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
32
373
0
08 Jun 2018
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
41
189
0
15 Sep 2017
Reverse Curriculum Generation for Reinforcement Learning
Carlos Florensa
David Held
Markus Wulfmeier
Michael Zhang
Pieter Abbeel
36
438
0
17 Jul 2017
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
30
889
0
30 Jun 2017
Count-Based Exploration in Feature Space for Reinforcement Learning
Jarryd Martin
S. N. Sasikumar
Tom Everitt
Marcus Hutter
24
122
0
25 Jun 2017
On Optimistic versus Randomized Exploration in Reinforcement Learning
Ian Osband
Benjamin Van Roy
26
10
0
13 Jun 2017
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
31
593
0
06 Jun 2017
From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood
Kelvin Guu
Panupong Pasupat
Emmy Liu
Percy Liang
34
190
0
25 Apr 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
47
360
0
10 Apr 2017
Thompson Sampling for Linear-Quadratic Control Problems
Marc Abeille
A. Lazaric
25
55
0
27 Mar 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
53
300
0
22 Mar 2017
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
50
616
0
03 Mar 2017
A Laplacian Framework for Option Discovery in Reinforcement Learning
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
31
261
0
02 Mar 2017
Gaussian-Dirichlet Posterior Dominance in Sequential Learning
Ian Osband
Benjamin Van Roy
27
8
0
14 Feb 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
60
762
0
15 Nov 2016
Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks
Nicolas Usunier
Gabriel Synnaeve
Zeming Lin
Soumith Chintala
30
138
0
10 Sep 2016
Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
Ian Osband
Benjamin Van Roy
BDL
29
255
0
01 Jul 2016
VIME: Variational Information Maximizing Exploration
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
27
78
0
31 May 2016
Angrier Birds: Bayesian reinforcement learning
Imanol Arrieta-Ibarra
Bernardo Ramos
Lars Roemheld
12
1
0
06 Jan 2016
Efficient Learning in Large-Scale Combinatorial Semi-Bandits
Zheng Wen
Branislav Kveton
Azin Ashkan
OffRL
59
96
0
28 Jun 2014
Near-optimal Reinforcement Learning in Factored MDPs
Ian Osband
Benjamin Van Roy
47
120
0
15 Mar 2014
Optimal Demand Response Using Device Based Reinforcement Learning
Zheng Wen
D. OÑeill
H. Maei
OffRL
32
232
0
08 Jan 2014
Efficient Reinforcement Learning in Deterministic Systems with Value Function Generalization
Zheng Wen
Benjamin Van Roy
31
42
0
18 Jul 2013
Previous
1
2