ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.0635
  4. Cited By
Generalization and Exploration via Randomized Value Functions

Generalization and Exploration via Randomized Value Functions

4 February 2014
Ian Osband
Benjamin Van Roy
Zheng Wen
ArXivPDFHTML

Papers citing "Generalization and Exploration via Randomized Value Functions"

46 / 96 papers shown
Title
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play
Qinghua Liu
Tiancheng Yu
Yu Bai
Chi Jin
41
121
0
04 Oct 2020
Is Q-Learning Provably Efficient? An Extended Analysis
Is Q-Learning Provably Efficient? An Extended Analysis
Kushagra Rastogi
Jonathan Lee
Fabrice Harel-Canada
Aditya Sunil Joglekar
OffRL
19
1
0
22 Sep 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value
  Iteration
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
41
64
0
18 Aug 2020
Single-partition adaptive Q-learning
Single-partition adaptive Q-learning
J. Araújo
Mário A. T. Figueiredo
M. Botto
OffRL
25
2
0
14 Jul 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
  Reinforcement Learning
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
30
201
0
09 Jul 2020
Near-Optimal Reinforcement Learning with Self-Play
Near-Optimal Reinforcement Learning with Self-Play
Yunru Bai
Chi Jin
Tiancheng Yu
29
130
0
22 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
83
0
15 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
62
300
0
01 Jun 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function
  Approximation and Correlated Equilibrium
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
46
125
0
17 Feb 2020
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai
Chi Jin
SSL
32
149
0
10 Feb 2020
Explore, Discover and Learn: Unsupervised Discovery of State-Covering
  Skills
Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos
Alexander R. Trott
Caiming Xiong
R. Socher
Xavier Giró-i-Nieto
Jordi Torres
OffRL
19
151
0
10 Feb 2020
Adaptive Approximate Policy Iteration
Adaptive Approximate Policy Iteration
Botao Hao
N. Lazić
Yasin Abbasi-Yadkori
Pooria Joulani
Csaba Szepesvári
18
14
0
08 Feb 2020
Making Sense of Reinforcement Learning and Probabilistic Inference
Making Sense of Reinforcement Learning and Probabilistic Inference
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
37
48
0
03 Jan 2020
Scaling active inference
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
24
68
0
24 Nov 2019
Model-free Reinforcement Learning in Infinite-horizon Average-reward
  Markov Decision Processes
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Hiteshi Sharma
R. Jain
109
104
0
15 Oct 2019
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
29
100
0
23 Sep 2019
Provably Efficient Reinforcement Learning with Linear Function
  Approximation
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
57
546
0
11 Jul 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
32
8
0
10 Jun 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
40
96
0
23 May 2019
A Bayesian Approach to Robust Reinforcement Learning
A Bayesian Approach to Robust Reinforcement Learning
E. Derman
D. Mankowitz
Timothy A. Mann
Shie Mannor
28
58
0
20 May 2019
Context-Dependent Upper-Confidence Bounds for Directed Exploration
Context-Dependent Upper-Confidence Bounds for Directed Exploration
Raksha Kumaraswamy
M. Schlegel
Adam White
Martha White
OffRL
31
12
0
15 Nov 2018
Policy Certificates: Towards Accountable Reinforcement Learning
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
30
141
0
07 Nov 2018
Successor Uncertainties: Exploration and Uncertainty in Temporal
  Difference Learning
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
65
51
0
15 Oct 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
32
373
0
08 Jun 2018
The Uncertainty Bellman Equation and Exploration
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
41
189
0
15 Sep 2017
Reverse Curriculum Generation for Reinforcement Learning
Reverse Curriculum Generation for Reinforcement Learning
Carlos Florensa
David Held
Markus Wulfmeier
Michael Zhang
Pieter Abbeel
36
438
0
17 Jul 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
30
889
0
30 Jun 2017
Count-Based Exploration in Feature Space for Reinforcement Learning
Count-Based Exploration in Feature Space for Reinforcement Learning
Jarryd Martin
S. N. Sasikumar
Tom Everitt
Marcus Hutter
24
122
0
25 Jun 2017
On Optimistic versus Randomized Exploration in Reinforcement Learning
On Optimistic versus Randomized Exploration in Reinforcement Learning
Ian Osband
Benjamin Van Roy
26
10
0
13 Jun 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
31
593
0
06 Jun 2017
From Language to Programs: Bridging Reinforcement Learning and Maximum
  Marginal Likelihood
From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood
Kelvin Guu
Panupong Pasupat
Emmy Liu
Percy Liang
34
190
0
25 Apr 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
47
360
0
10 Apr 2017
Thompson Sampling for Linear-Quadratic Control Problems
Thompson Sampling for Linear-Quadratic Control Problems
Marc Abeille
A. Lazaric
25
55
0
27 Mar 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
53
300
0
22 Mar 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
50
616
0
03 Mar 2017
A Laplacian Framework for Option Discovery in Reinforcement Learning
A Laplacian Framework for Option Discovery in Reinforcement Learning
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
31
261
0
02 Mar 2017
Gaussian-Dirichlet Posterior Dominance in Sequential Learning
Gaussian-Dirichlet Posterior Dominance in Sequential Learning
Ian Osband
Benjamin Van Roy
27
8
0
14 Feb 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
60
762
0
15 Nov 2016
Episodic Exploration for Deep Deterministic Policies: An Application to
  StarCraft Micromanagement Tasks
Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks
Nicolas Usunier
Gabriel Synnaeve
Zeming Lin
Soumith Chintala
30
138
0
10 Sep 2016
Why is Posterior Sampling Better than Optimism for Reinforcement
  Learning?
Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
Ian Osband
Benjamin Van Roy
BDL
29
255
0
01 Jul 2016
VIME: Variational Information Maximizing Exploration
VIME: Variational Information Maximizing Exploration
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
27
78
0
31 May 2016
Angrier Birds: Bayesian reinforcement learning
Angrier Birds: Bayesian reinforcement learning
Imanol Arrieta-Ibarra
Bernardo Ramos
Lars Roemheld
12
1
0
06 Jan 2016
Efficient Learning in Large-Scale Combinatorial Semi-Bandits
Efficient Learning in Large-Scale Combinatorial Semi-Bandits
Zheng Wen
Branislav Kveton
Azin Ashkan
OffRL
59
96
0
28 Jun 2014
Near-optimal Reinforcement Learning in Factored MDPs
Near-optimal Reinforcement Learning in Factored MDPs
Ian Osband
Benjamin Van Roy
47
120
0
15 Mar 2014
Optimal Demand Response Using Device Based Reinforcement Learning
Optimal Demand Response Using Device Based Reinforcement Learning
Zheng Wen
D. OÑeill
H. Maei
OffRL
32
232
0
08 Jan 2014
Efficient Reinforcement Learning in Deterministic Systems with Value
  Function Generalization
Efficient Reinforcement Learning in Deterministic Systems with Value Function Generalization
Zheng Wen
Benjamin Van Roy
31
42
0
18 Jul 2013
Previous
12