Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.0635
Cited By
Generalization and Exploration via Randomized Value Functions
4 February 2014
Ian Osband
Benjamin Van Roy
Zheng Wen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization and Exploration via Randomized Value Functions"
50 / 94 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
99
3
0
29 Apr 2025
Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Yongshuai Liu
Xin Liu
103
1
0
26 Mar 2025
Minimax Optimal Reinforcement Learning with Quasi-Optimism
Harin Lee
Min-hwan Oh
OffRL
66
1
0
02 Mar 2025
IL-SOAR : Imitation Learning with Soft Optimistic Actor cRitic
Stefano Viel
Luca Viano
Volkan Cevher
121
1
0
27 Feb 2025
Reinforcement Learning on Dyads to Enhance Medication Adherence
Ziping Xu
Hinal Jajal
S. Choi
Inbal Nahum-Shani
Guy Shani
Alexandra M. Psihogios
Pei-Yao Hung
Susan Murphy
76
0
0
06 Feb 2025
EVaDE : Event-Based Variational Thompson Sampling for Model-Based Reinforcement Learning
Siddharth Aravindan
Dixant Mittal
Wee Sun Lee
BDL
98
0
0
17 Jan 2025
A Single Goal is All You Need: Skills and Exploration Emerge from Contrastive RL without Rewards, Demonstrations, or Subgoals
Grace Liu
Michael Tang
Benjamin Eysenbach
OffRL
79
1
0
11 Aug 2024
Random Latent Exploration for Deep Reinforcement Learning
Srinath Mahankali
Zhang-Wei Hong
Ayush Sekhari
Alexander Rakhlin
Pulkit Agrawal
64
3
0
18 Jul 2024
Near-Optimal Regret in Linear MDPs with Aggregate Bandit Feedback
Asaf B. Cassel
Haipeng Luo
Aviv A. Rosenberg
Dmitry Sotnikov
OffRL
52
4
0
13 May 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
38
5
0
05 Feb 2024
Adaptive trajectory-constrained exploration strategy for deep reinforcement learning
Guojian Wang
Faguo Wu
Xiao Zhang
Ning Guo
Zhiming Zheng
46
3
0
27 Dec 2023
Inverse Decision Modeling: Learning Interpretable Representations of Behavior
Daniel Jarrett
Alihan Huyuk
M. Schaar
AI4CE
35
27
0
28 Oct 2023
Dyadic Reinforcement Learning
Shuangning Li
L. Niell
S. Choi
Inbal Nahum-Shani
Guy Shani
Susan Murphy
OffRL
33
2
0
15 Aug 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
35
20
0
29 May 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
42
8
0
05 May 2023
VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation
Thanh Nguyen-Tang
R. Arora
OffRL
58
5
0
24 Feb 2023
Reinforcement Learning in a Birth and Death Process: Breaking the Dependence on the State Space
Jonatha Anselmi
B. Gaujal
Louis-Sébastien Rebuffi
51
2
0
21 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
46
5
0
08 Feb 2023
Data-pooling Reinforcement Learning for Personalized Healthcare Intervention
Xinyun Chen
P. Shi
Shanwen Pu
OffRL
35
4
0
16 Nov 2022
Foundation Models for Semantic Novelty in Reinforcement Learning
Tarun Gupta
Peter Karkus
Tong Che
Danfei Xu
Marco Pavone
VLM
OffRL
LRM
50
7
0
09 Nov 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
47
4
0
30 Oct 2022
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam
Satinder Singh
49
3
0
30 Oct 2022
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
Wei Xiong
Han Zhong
Chengshuai Shi
Cong Shen
Tong Zhang
69
18
0
04 Oct 2022
Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks
Litian Liang
Yaosheng Xu
Stephen Marcus McAleer
Dailin Hu
Alexander Ihler
Pieter Abbeel
Roy Fox
OOD
46
18
0
16 Sep 2022
A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning
Christoph Dann
M. Mohri
Tong Zhang
Julian Zimmert
OffRL
26
33
0
23 Aug 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
59
22
0
15 Jun 2022
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal Reinforcement Learning
Nicolas Castanet
Sylvain Lamprier
Olivier Sigaud
30
3
0
14 Jun 2022
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
33
330
0
02 May 2022
Provably Efficient Kernelized Q-Learning
Shuang Liu
H. Su
MLT
49
4
0
21 Apr 2022
Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency
Qi Cai
Zhuoran Yang
Zhaoran Wang
43
14
0
20 Apr 2022
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets
Yifei Min
Tianhao Wang
Ruitu Xu
Zhaoran Wang
Michael I. Jordan
Zhuoran Yang
43
21
0
07 Mar 2022
Improving the Diversity of Bootstrapped DQN by Replacing Priors With Noise
Li Meng
Morten Goodwin
Anis Yazidi
P. Engelstad
35
4
0
02 Mar 2022
Improved Regret for Differentially Private Exploration in Linear MDP
Dung Daniel Ngo
G. Vietri
Zhiwei Steven Wu
40
8
0
02 Feb 2022
Exponential Family Model-Based Reinforcement Learning via Score Matching
Gen Li
Junbo Li
Anmol Kabra
Nathan Srebro
Zhaoran Wang
Zhuoran Yang
37
4
0
28 Dec 2021
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval
Dingrong Wang
Hitesh Sapkota
Xumin Liu
Qi Yu
50
4
0
21 Nov 2021
Safe Policy Optimization with Local Generalized Linear Function Approximations
Akifumi Wachi
Yunyue Wei
Yanan Sui
OffRL
38
10
0
09 Nov 2021
Perturbational Complexity by Distribution Mismatch: A Systematic Analysis of Reinforcement Learning in Reproducing Kernel Hilbert Space
Jihao Long
Jiequn Han
36
6
0
05 Nov 2021
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
42
12
0
26 Oct 2021
Exploring More When It Needs in Deep Reinforcement Learning
Youtian Guo
Qitong Gao
18
0
0
28 Sep 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
41
94
0
14 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
43
81
0
01 Sep 2021
Randomized Exploration for Reinforcement Learning with General Value Function Approximation
Haque Ishfaq
Qiwen Cui
V. Nguyen
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
40
43
0
15 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
37
28
0
17 May 2021
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Victor Campos
Pablo Sprechmann
Steven Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
OffRL
OnRL
46
25
0
24 Feb 2021
Learning Adversarial Markov Decision Processes with Delayed Feedback
Tal Lancewicki
Aviv A. Rosenberg
Yishay Mansour
43
32
0
29 Dec 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
47
18
0
09 Nov 2020
Control with adaptive Q-learning
J. Araújo
Mário A. T. Figueiredo
M. Botto
38
2
0
03 Nov 2020
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration
Priyank Agrawal
Jinglin Chen
Nan Jiang
42
19
0
23 Oct 2020
UneVEn: Universal Value Exploration for Multi-Agent Reinforcement Learning
Tarun Gupta
Anuj Mahajan
Bei Peng
Wendelin Bohmer
Shimon Whiteson
OffRL
24
50
0
06 Oct 2020
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
41
7
0
05 Oct 2020
1
2
Next