Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1401.4082
Cited By
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
16 January 2014
Danilo Jimenez Rezende
S. Mohamed
Daan Wierstra
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Backpropagation and Approximate Inference in Deep Generative Models"
31 / 31 papers shown
Title
Soft Neighbors are Positive Supporters in Contrastive Visual Representation Learning
Chongjian Ge
Jiangliu Wang
Zhan Tong
Shoufa Chen
Yibing Song
Ping Luo
SSL
22
27
0
30 Mar 2023
Generalization Gap in Amortized Inference
Mingtian Zhang
Peter Hayes
David Barber
BDL
CML
DRL
45
14
0
23 May 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
75
17
0
22 Feb 2022
Revitalizing CNN Attentions via Transformers in Self-Supervised Visual Representation Learning
Chongjian Ge
Youwei Liang
Yibing Song
Jianbo Jiao
Jue Wang
Ping Luo
ViT
24
36
0
11 Oct 2021
Entropic Issues in Likelihood-Based OOD Detection
Anthony L. Caterini
G. Loaiza-Ganem
OODD
24
15
0
22 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
82
0
08 Sep 2021
Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
Zhibin Duan
Dongsheng Wang
Bo Chen
Chaojie Wang
Wenchao Chen
Yewen Li
Jie Ren
Mingyuan Zhou
BDL
37
38
0
30 Jun 2021
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDL
OCL
225
68
0
23 Oct 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
131
6,665
0
13 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Hybrid Generative-Discriminative Models for Inverse Materials Design
Phuoc Nguyen
T. Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
AI4CE
PINN
13
6
0
31 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
12
27
0
01 Oct 2018
Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention
Chao Yang
Taehwan Kim
Ruizhe Wang
Hao Peng
C.-C. Jay Kuo
28
51
0
16 Jun 2018
Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)
Søren Hauberg
13
31
0
13 Jun 2018
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
46
240
0
25 May 2018
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
DIY Human Action Data Set Generation
Mehran Khodabandeh
Hamid Reza Vaezi Joze
Ilya Zharkov
V. Pradeep
21
11
0
29 Mar 2018
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
17
38
0
24 Oct 2017
MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov
Ming Liu
Xiaodong Yang
Jan Kautz
GAN
93
1,131
0
17 Jul 2017
Improved generator objectives for GANs
Ben Poole
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
A. Angelova
25
70
0
08 Dec 2016
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
59
1,001
0
07 Nov 2016
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Lantao Yu
Weinan Zhang
Jun Wang
Yong Yu
GAN
20
2,385
0
18 Sep 2016
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
16
59
0
18 Apr 2016
Generating Images from Captions with Attention
Elman Mansimov
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov
VLM
43
449
0
09 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
23
335
0
07 Nov 2015
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning
S. Mohamed
Danilo Jimenez Rezende
DRL
SSL
8
399
0
29 Sep 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
79
6,608
0
12 Mar 2015
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
40
273
0
27 Nov 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
65
126
0
11 Jun 2014
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Diederik P. Kingma
Max Welling
BDL
38
61
0
03 Feb 2014
1