ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.2115
  4. Cited By
Fast large-scale optimization by unifying stochastic gradient and
  quasi-Newton methods

Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods

9 November 2013
Jascha Narain Sohl-Dickstein
Ben Poole
Surya Ganguli
    ODL
ArXivPDFHTML

Papers citing "Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods"

20 / 20 papers shown
Title
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
53
2
0
07 Jul 2021
Whitening and second order optimization both make information in the
  dataset unusable during training, and can reduce or prevent generalization
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
24
13
0
17 Aug 2020
Optimization of neural networks via finite-value quantum fluctuations
Optimization of neural networks via finite-value quantum fluctuations
Masayuki Ohzeki
Shuntaro Okada
Masayoshi Terabe
S. Taguchi
13
21
0
01 Jul 2018
Algorithms for solving optimization problems arising from deep neural
  net models: smooth problems
Algorithms for solving optimization problems arising from deep neural net models: smooth problems
Vyacheslav Kungurtsev
Tomás Pevný
16
6
0
30 Jun 2018
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
  Benchmark
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman
Daniel Kang
Deepak Narayanan
Luigi Nardi
Tian Zhao
Jian Zhang
Peter Bailis
K. Olukotun
Christopher Ré
Matei A. Zaharia
13
117
0
04 Jun 2018
Stochastic Training of Neural Networks via Successive Convex
  Approximations
Stochastic Training of Neural Networks via Successive Convex Approximations
Simone Scardapane
P. Di Lorenzo
16
9
0
15 Jun 2017
Proximal Backpropagation
Proximal Backpropagation
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
21
31
0
14 Jun 2017
DeepGaze II: Reading fixations from deep features trained on object
  recognition
DeepGaze II: Reading fixations from deep features trained on object recognition
Matthias Kümmerer
Thomas S. A. Wallis
Matthias Bethge
18
287
0
05 Oct 2016
A Kronecker-factored approximate Fisher matrix for convolution layers
A Kronecker-factored approximate Fisher matrix for convolution layers
Roger C. Grosse
James Martens
ODL
26
257
0
03 Feb 2016
A Linearly-Convergent Stochastic L-BFGS Algorithm
A Linearly-Convergent Stochastic L-BFGS Algorithm
Philipp Moritz
Robert Nishihara
Michael I. Jordan
ODL
27
232
0
09 Aug 2015
Tensor machines for learning target-specific polynomial features
Tensor machines for learning target-specific polynomial features
Jiyan Yang
Alex Gittens
21
8
0
07 Apr 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
59
6,592
0
12 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
22
148,823
0
22 Dec 2014
Discovering Hidden Factors of Variation in Deep Networks
Discovering Hidden Factors of Variation in Deep Networks
Brian Cheung
J. Livezey
Arjun K. Bansal
Bruno A. Olshausen
DRL
22
193
0
20 Dec 2014
Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on
  ImageNet
Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet
Matthias Kümmerer
Lucas Theis
Matthias Bethge
FAtt
27
406
0
04 Nov 2014
Identifying and attacking the saddle point problem in high-dimensional
  non-convex optimization
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
29
1,376
0
10 Jun 2014
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
76
317
0
18 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
52
1,243
0
10 Sep 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
1