ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.0689
  4. Cited By
Particle filter-based Gaussian process optimisation for parameter
  inference

Particle filter-based Gaussian process optimisation for parameter inference

4 November 2013
J. Dahlin
Fredrik Lindsten
    GP
ArXivPDFHTML

Papers citing "Particle filter-based Gaussian process optimisation for parameter inference"

6 / 6 papers shown
Title
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
Yibo Shi
Braghadeesh Lakshminarayanan
Cristian R. Rojas
31
0
0
08 Apr 2025
Learning nonlinear state-space models using smooth particle-filter-based
  likelihood approximations
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
Andreas Svensson
Fredrik Lindsten
Thomas B. Schon
16
6
0
29 Nov 2017
On the construction of probabilistic Newton-type algorithms
On the construction of probabilistic Newton-type algorithms
A. Wills
Thomas B. Schon
18
13
0
05 Apr 2017
Bayesian optimisation for fast approximate inference in state-space
  models with intractable likelihoods
Bayesian optimisation for fast approximate inference in state-space models with intractable likelihoods
J. Dahlin
M. Villani
Thomas B. Schon
29
6
0
23 Jun 2015
Newton-based maximum likelihood estimation in nonlinear state space
  models
Newton-based maximum likelihood estimation in nonlinear state space models
Manon Kok
J. Dahlin
Thomas B. Schon
A. Wills
27
10
0
12 Feb 2015
Marginalizing Gaussian Process Hyperparameters using Sequential Monte
  Carlo
Marginalizing Gaussian Process Hyperparameters using Sequential Monte Carlo
Andreas Svensson
J. Dahlin
Thomas B. Schon
GP
50
28
0
06 Feb 2015
1