32
6

Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations

Abstract

When classical particle filtering algorithms are used for maximum likelihood parameter estimation in nonlinear state-space models, a key challenge is that estimates of the likelihood function and its derivatives are inherently noisy. The key idea in this paper is to run a particle filter based on a current parameter estimate, but then use the output from this particle filter to re-evaluate the likelihood function approximation also for other parameter values. This results in a (local) deterministic approximation of the likelihood and any standard optimization routine can be applied to find the maximum of this local approximation. By iterating this procedure we eventually arrive at a final parameter estimate.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.