Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.5715
Cited By
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
21 October 2013
Deanna Needell
Nathan Srebro
Rachel A. Ward
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm"
23 / 73 papers shown
Title
A Hybrid Recommender System for Patient-Doctor Matchmaking in Primary Care
Qiwei Han
Mengxin Ji
Inigo Martinez de Rituerto de Troya
Manas Gaur
Leid Zejnilovic
8
43
0
09 Aug 2018
Stochastic modified equations for the asynchronous stochastic gradient descent
Jing An
Jian-wei Lu
Lexing Ying
21
79
0
21 May 2018
Generalization Error Bounds for Noisy, Iterative Algorithms
Ankit Pensia
Varun Jog
Po-Ling Loh
14
109
0
12 Jan 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
27
53
0
07 Nov 2017
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
16
38
0
03 Nov 2017
Stochastic Newton and Quasi-Newton Methods for Large Linear Least-squares Problems
Julianne Chung
Matthias Chung
J. T. Slagel
L. Tenorio
19
11
0
23 Feb 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
13
110
0
15 Dec 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
14
62
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
22
1,876
0
08 Oct 2016
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs
A. Osokin
Jean-Baptiste Alayrac
Isabella Lukasewitz
P. Dokania
Simon Lacoste-Julien
25
65
0
30 May 2016
Learning a Metric Embedding for Face Recognition using the Multibatch Method
Oren Tadmor
Y. Wexler
Tal Rosenwein
Shai Shalev-Shwartz
Amnon Shashua
CVBM
21
53
0
24 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
32
182
0
13 May 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
36
172
0
30 Dec 2015
Online Batch Selection for Faster Training of Neural Networks
I. Loshchilov
Frank Hutter
ODL
26
296
0
19 Nov 2015
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
19
279
0
19 Nov 2015
Online Censoring for Large-Scale Regressions with Application to Streaming Big Data
Dimitris Berberidis
V. Kekatos
G. Giannakis
21
65
0
27 Jul 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
20
273
0
16 Apr 2015
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Mark W. Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
33
83
0
16 Apr 2015
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
35
261
0
10 Sep 2014
On Data Preconditioning for Regularized Loss Minimization
Tianbao Yang
R. L. Jin
Shenghuo Zhu
Qihang Lin
40
9
0
13 Aug 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
50
1,243
0
10 Sep 2013
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
Previous
1
2