Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.2059
Cited By
Distributed Coordinate Descent Method for Learning with Big Data
8 October 2013
Peter Richtárik
Martin Takáč
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Coordinate Descent Method for Learning with Big Data"
50 / 104 papers shown
Title
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
36
5,020
0
14 Dec 2018
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
16
19
0
10 Dec 2018
LoAdaBoost: loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
Li Huang
Yifeng Yin
Z. Fu
Shifa Zhang
Hao Deng
Dianbo Liu
FedML
29
70
0
30 Nov 2018
Asynchronous Stochastic Composition Optimization with Variance Reduction
Shuheng Shen
Linli Xu
Jingchang Liu
Junliang Guo
Qing Ling
8
2
0
15 Nov 2018
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
34
32
0
20 Jun 2018
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization
Ching-pei Lee
Cong Han Lim
Stephen J. Wright
13
29
0
04 Mar 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
26
51
0
17 Jan 2018
Avoiding Synchronization in First-Order Methods for Sparse Convex Optimization
Aditya Devarakonda
K. Fountoulakis
J. Demmel
Michael W. Mahoney
19
5
0
17 Dec 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
26
38
0
04 Jul 2017
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Peter Richtárik
Martin Takáč
17
92
0
04 Jun 2017
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
Jie Liu
Martin Takáč
ODL
12
4
0
16 Dec 2016
Understanding and Optimizing the Performance of Distributed Machine Learning Applications on Apache Spark
Celestine Mendler-Dünner
Thomas Parnell
Kubilay Atasu
Manolis Sifalakis
H. Pozidis
19
17
0
05 Dec 2016
Communication Lower Bounds for Distributed Convex Optimization: Partition Data on Features
Zihao Chen
Luo Luo
Zhihua Zhang
32
3
0
02 Dec 2016
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
27
101
0
22 Nov 2016
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
16
272
0
07 Nov 2016
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Hybrid-DCA: A Double Asynchronous Approach for Stochastic Dual Coordinate Ascent
Soumitra Pal
Tingyang Xu
Tianbao Yang
Sanguthevar Rajasekaran
J. Bi
10
2
0
23 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
60
1,878
0
08 Oct 2016
On Randomized Distributed Coordinate Descent with Quantized Updates
M. Gamal
Lifeng Lai
13
5
0
18 Sep 2016
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
21
14
0
15 Jun 2016
Learning Natural Language Inference using Bidirectional LSTM model and Inner-Attention
Yang Liu
Chengjie Sun
Mehdi Alizadeh
Xiaolong Wang
27
273
0
30 May 2016
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
28
10
0
16 Mar 2016
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
19
41
0
17 Feb 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
26
113
0
06 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
27
197
0
13 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
17
725
0
11 Nov 2015
Partitioning Data on Features or Samples in Communication-Efficient Distributed Optimization?
Chenxin Ma
Martin Takáč
15
11
0
22 Oct 2015
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
27
50
0
29 Jul 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
33
23
0
07 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
34
207
0
05 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
28
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
40
97
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
24
131
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
18
135
0
08 Nov 2014
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
37
22
0
17 Oct 2014
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
21
19
0
09 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
35
353
0
04 Sep 2014
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
45
19
0
11 Aug 2014
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
32
60
0
16 Jul 2014
LOCO: Distributing Ridge Regression with Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
Gabriel Krummenacher
52
34
0
13 Jun 2014
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
Olivier Fercoq
Zheng Qu
Peter Richtárik
Martin Takáč
32
59
0
21 May 2014
A distributed block coordinate descent method for training
l
1
l_1
l
1
regularized linear classifiers
D. Mahajan
S. Keerthi
S. Sundararajan
32
36
0
18 May 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
35
551
0
30 Dec 2013
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
36
373
0
20 Dec 2013
Previous
1
2
3
Next