ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.2059
  4. Cited By
Distributed Coordinate Descent Method for Learning with Big Data

Distributed Coordinate Descent Method for Learning with Big Data

8 October 2013
Peter Richtárik
Martin Takáč
ArXivPDFHTML

Papers citing "Distributed Coordinate Descent Method for Learning with Big Data"

50 / 104 papers shown
Title
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
36
5,020
0
14 Dec 2018
Distributed Learning with Sparse Communications by Identification
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
16
19
0
10 Dec 2018
LoAdaBoost: loss-based AdaBoost federated machine learning with reduced
  computational complexity on IID and non-IID intensive care data
LoAdaBoost: loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
Li Huang
Yifeng Yin
Z. Fu
Shifa Zhang
Hao Deng
Dianbo Liu
FedML
29
70
0
30 Nov 2018
Asynchronous Stochastic Composition Optimization with Variance Reduction
Asynchronous Stochastic Composition Optimization with Variance Reduction
Shuheng Shen
Linli Xu
Jingchang Liu
Junliang Guo
Qing Ling
8
2
0
15 Nov 2018
A Distributed Second-Order Algorithm You Can Trust
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
34
32
0
20 Jun 2018
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization
  with Nonsmooth Regularization
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization
Ching-pei Lee
Cong Han Lim
Stephen J. Wright
13
29
0
04 Mar 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate
  Designs of Experiments
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
26
51
0
17 Jan 2018
Avoiding Synchronization in First-Order Methods for Sparse Convex
  Optimization
Avoiding Synchronization in First-Order Methods for Sparse Convex Optimization
Aditya Devarakonda
K. Fountoulakis
J. Demmel
Michael W. Mahoney
19
5
0
17 Dec 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
26
38
0
04 Jul 2017
Stochastic Reformulations of Linear Systems: Algorithms and Convergence
  Theory
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Peter Richtárik
Martin Takáč
17
92
0
04 Jun 2017
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme
  under Weak Strong Convexity Assumption
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
Jie Liu
Martin Takáč
ODL
12
4
0
16 Dec 2016
Understanding and Optimizing the Performance of Distributed Machine
  Learning Applications on Apache Spark
Understanding and Optimizing the Performance of Distributed Machine Learning Applications on Apache Spark
Celestine Mendler-Dünner
Thomas Parnell
Kubilay Atasu
Manolis Sifalakis
H. Pozidis
19
17
0
05 Dec 2016
Communication Lower Bounds for Distributed Convex Optimization:
  Partition Data on Features
Communication Lower Bounds for Distributed Convex Optimization: Partition Data on Features
Zihao Chen
Luo Luo
Zhihua Zhang
32
3
0
02 Dec 2016
Randomized Distributed Mean Estimation: Accuracy vs Communication
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
27
101
0
22 Nov 2016
CoCoA: A General Framework for Communication-Efficient Distributed
  Optimization
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
16
272
0
07 Nov 2016
Optimization for Large-Scale Machine Learning with Distributed Features
  and Observations
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Hybrid-DCA: A Double Asynchronous Approach for Stochastic Dual
  Coordinate Ascent
Hybrid-DCA: A Double Asynchronous Approach for Stochastic Dual Coordinate Ascent
Soumitra Pal
Tingyang Xu
Tianbao Yang
Sanguthevar Rajasekaran
J. Bi
10
2
0
23 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
60
1,878
0
08 Oct 2016
On Randomized Distributed Coordinate Descent with Quantized Updates
On Randomized Distributed Coordinate Descent with Quantized Updates
M. Gamal
Lifeng Lai
13
5
0
18 Sep 2016
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale
  Learning
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
21
14
0
15 Jun 2016
Learning Natural Language Inference using Bidirectional LSTM model and
  Inner-Attention
Learning Natural Language Inference using Bidirectional LSTM model and Inner-Attention
Yang Liu
Chengjie Sun
Mehdi Alizadeh
Xiaolong Wang
27
273
0
30 May 2016
Distributed Inexact Damped Newton Method: Data Partitioning and
  Load-Balancing
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
28
10
0
16 Mar 2016
Large Scale Kernel Learning using Block Coordinate Descent
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
19
41
0
17 Feb 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
26
113
0
06 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Distributed Optimization with Arbitrary Local Solvers
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
27
197
0
13 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
17
725
0
11 Nov 2015
Partitioning Data on Features or Samples in Communication-Efficient
  Distributed Optimization?
Partitioning Data on Features or Samples in Communication-Efficient Distributed Optimization?
Chenxin Ma
Martin Takáč
15
11
0
22 Oct 2015
Distributed Mini-Batch SDCA
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
27
50
0
29 Jul 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex
  Losses
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
33
23
0
07 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
34
207
0
05 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
28
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
40
97
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable
  Overapproximation
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
24
131
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Learning Theory for Distribution Regression
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
18
135
0
08 Nov 2014
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal
  Setting
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
37
22
0
17 Oct 2014
Large-scale randomized-coordinate descent methods with non-separable
  linear constraints
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
21
19
0
09 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
35
353
0
04 Sep 2014
Matrix Completion under Interval Uncertainty
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
45
19
0
11 Aug 2014
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data
  Optimization
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
32
60
0
16 Jul 2014
LOCO: Distributing Ridge Regression with Random Projections
LOCO: Distributing Ridge Regression with Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
Gabriel Krummenacher
52
34
0
13 Jun 2014
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
Olivier Fercoq
Zheng Qu
Peter Richtárik
Martin Takáč
32
59
0
21 May 2014
A distributed block coordinate descent method for training $l_1$
  regularized linear classifiers
A distributed block coordinate descent method for training l1l_1l1​ regularized linear classifiers
D. Mahajan
S. Keerthi
S. Sundararajan
32
36
0
18 May 2014
Communication Efficient Distributed Optimization using an Approximate
  Newton-type Method
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
35
551
0
30 Dec 2013
Accelerated, Parallel and Proximal Coordinate Descent
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
36
373
0
20 Dec 2013
Previous
123
Next