ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.6306
  4. Cited By
On the Brittleness of Bayesian Inference
v1v2v3 (latest)

On the Brittleness of Bayesian Inference

28 August 2013
H. Owhadi
C. Scovel
T. Sullivan
ArXiv (abs)PDFHTML

Papers citing "On the Brittleness of Bayesian Inference"

25 / 25 papers shown
Title
Multiclass classification utilising an estimated algorithmic probability
  prior
Multiclass classification utilising an estimated algorithmic probability prior
K. Dingle
Pau Batlle
H. Owhadi
64
4
0
14 Dec 2022
On the Sensitivity of Reward Inference to Misspecified Human Models
On the Sensitivity of Reward Inference to Misspecified Human Models
Joey Hong
Kush S. Bhatia
Anca Dragan
52
26
0
09 Dec 2022
Robust Expected Information Gain for Optimal Bayesian Experimental
  Design Using Ambiguity Sets
Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
Jinwook Go
T. Isaac
58
12
0
20 May 2022
Bayesian inference in Epidemics: linear noise analysis
Bayesian inference in Epidemics: linear noise analysis
S. Bronstein
Stefan Engblom
R. Marin
52
0
0
21 Mar 2022
Probabilistic learning inference of boundary value problem with
  uncertainties based on Kullback-Leibler divergence under implicit constraints
Probabilistic learning inference of boundary value problem with uncertainties based on Kullback-Leibler divergence under implicit constraints
Christian Soize
51
6
0
10 Feb 2022
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAMLOOD
105
28
0
13 Sep 2021
Uncertainty Quantification of the 4th kind; optimal posterior
  accuracy-uncertainty tradeoff with the minimum enclosing ball
Uncertainty Quantification of the 4th kind; optimal posterior accuracy-uncertainty tradeoff with the minimum enclosing ball
Hamed Hamze Bajgiran
P. Franch
H. Owhadi
Mostafa Samir
C. Scovel
Mahdy Shirdel
Michael Stanley
P. Tavallali
45
7
0
24 Aug 2021
Parsimonious Inference
Parsimonious Inference
J. Duersch
Thomas A. Catanach
UQCV
14
4
0
03 Mar 2021
Learning dynamical systems from data: a simple cross-validation
  perspective
Learning dynamical systems from data: a simple cross-validation perspective
B. Hamzi
H. Owhadi
78
41
0
09 Jul 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
82
64
0
11 Feb 2020
Explainable Artificial Intelligence (XAI) for 6G: Improving Trust
  between Human and Machine
Explainable Artificial Intelligence (XAI) for 6G: Improving Trust between Human and Machine
Weisi Guo
69
40
0
11 Nov 2019
On the Local Lipschitz Stability of Bayesian Inverse Problems
On the Local Lipschitz Stability of Bayesian Inverse Problems
Björn Sprungk
37
0
0
17 Jun 2019
Robust Regression for Safe Exploration in Control
Robust Regression for Safe Exploration in Control
Anqi Liu
Guanya Shi
Soon-Jo Chung
Anima Anandkumar
Yisong Yue
92
60
0
13 Jun 2019
Hyperparameter Estimation in Bayesian MAP Estimation: Parameterizations
  and Consistency
Hyperparameter Estimation in Bayesian MAP Estimation: Parameterizations and Consistency
Matthew M. Dunlop
T. Helin
Andrew M. Stuart
80
18
0
10 May 2019
What can be estimated? Identifiability, estimability, causal inference
  and ill-posed inverse problems
What can be estimated? Identifiability, estimability, causal inference and ill-posed inverse problems
Oliver J. Maclaren
R. Nicholson
64
36
0
04 Apr 2019
Kernel Flows: from learning kernels from data into the abyss
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
110
90
0
13 Aug 2018
Bayesian parameter identification in Cahn-Hilliard models for biological
  growth
Bayesian parameter identification in Cahn-Hilliard models for biological growth
Christian Kahle
K. F. Lam
J. Latz
E. Ullmann
67
22
0
08 May 2018
Uncertainty quantification in graph-based classification of high
  dimensional data
Uncertainty quantification in graph-based classification of high dimensional data
Andrea L. Bertozzi
Xiyang Luo
Andrew M. Stuart
K. Zygalakis
UQCV
81
21
0
26 Mar 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Gamblets for opening the complexity-bottleneck of implicit schemes for
  hyperbolic and parabolic ODEs/PDEs with rough coefficients
Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
H. Owhadi
Lei Zhang
AI4CE
74
71
0
24 Jun 2016
Towards Machine Wald
Towards Machine Wald
H. Owhadi
C. Scovel
TPM
77
42
0
10 Aug 2015
Multigrid with rough coefficients and Multiresolution operator
  decomposition from Hierarchical Information Games
Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games
H. Owhadi
91
169
0
11 Mar 2015
Qualitative Robustness in Bayesian Inference
Qualitative Robustness in Bayesian Inference
H. Owhadi
C. Scovel
141
26
0
14 Nov 2014
Gaussian Approximation of General Nonparametric Posterior Distributions
Gaussian Approximation of General Nonparametric Posterior Distributions
Zuofeng Shang
Guang Cheng
79
4
0
13 Nov 2014
Bayesian Numerical Homogenization
Bayesian Numerical Homogenization
H. Owhadi
109
236
0
25 Jun 2014
1