Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.0543
Cited By
v1
v2 (latest)
Predicting Parameters in Deep Learning
3 June 2013
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Predicting Parameters in Deep Learning"
50 / 392 papers shown
Title
Structural plasticity on an accelerated analog neuromorphic hardware system
Sebastian Billaudelle
Benjamin Cramer
Mihai A. Petrovici
Korbinian Schreiber
David Kappel
Johannes Schemmel
K. Meier
63
24
0
27 Dec 2019
Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks
Andrey Kuzmin
Markus Nagel
Saurabh Pitre
Sandeep Pendyam
Tijmen Blankevoort
Max Welling
75
27
0
20 Dec 2019
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Seul-Ki Yeom
P. Seegerer
Sebastian Lapuschkin
Alexander Binder
Simon Wiedemann
K. Müller
Wojciech Samek
CVBM
81
210
0
18 Dec 2019
Tangent Space Separability in Feedforward Neural Networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
50
3
0
18 Dec 2019
An Improving Framework of regularization for Network Compression
E. Zhenqian
Weiguo Gao
AI4CE
38
0
0
11 Dec 2019
Compressing 3DCNNs Based on Tensor Train Decomposition
Dingheng Wang
Guangshe Zhao
Guoqi Li
Lei Deng
Yang Wu
64
6
0
08 Dec 2019
Neural Machine Translation: A Review and Survey
Felix Stahlberg
3DV
AI4TS
MedIm
142
332
0
04 Dec 2019
Online Knowledge Distillation with Diverse Peers
Defang Chen
Jian-Ping Mei
Can Wang
Yan Feng
Chun-Yen Chen
FedML
87
305
0
01 Dec 2019
Pruning at a Glance: Global Neural Pruning for Model Compression
Abdullah Salama
O. Ostapenko
T. Klein
Moin Nabi
VLM
47
12
0
30 Nov 2019
Structured Multi-Hashing for Model Compression
Elad Eban
Yair Movshovitz-Attias
Hao Wu
Mark Sandler
Andrew Poon
Yerlan Idelbayev
M. A. Carreira-Perpiñán
78
18
0
25 Nov 2019
Knowledge Representing: Efficient, Sparse Representation of Prior Knowledge for Knowledge Distillation
Junjie Liu
Dongchao Wen
Hongxing Gao
Wei Tao
Tse-Wei Chen
Kinya Osa
Masami Kato
81
21
0
13 Nov 2019
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
A. Yaguchi
Taiji Suzuki
Shuhei Nitta
Y. Sakata
A. Tanizawa
88
9
0
29 Oct 2019
Deep Learning at the Edge
Sahar Voghoei
N. Tonekaboni
Jason G. Wallace
H. Arabnia
183
41
0
22 Oct 2019
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
92
18
0
11 Oct 2019
DEVDAN: Deep Evolving Denoising Autoencoder
Andri Ashfahani
Mahardhika Pratama
E. Lughofer
Yew-Soon Ong
109
99
0
08 Oct 2019
Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural Networks
Yuhang Li
Xin Dong
Wei Wang
MQ
84
260
0
28 Sep 2019
Training convolutional neural networks with cheap convolutions and online distillation
Jiao Xie
Shaohui Lin
Yichen Zhang
Linkai Luo
63
12
0
28 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
98
18
0
27 Sep 2019
Stochastic Conditional Generative Networks with Basis Decomposition
Ze Wang
Xiuyuan Cheng
Guillermo Sapiro
Qiang Qiu
GAN
139
18
0
25 Sep 2019
Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network
Taiji Suzuki
Hiroshi Abe
Tomoaki Nishimura
AI4CE
81
44
0
25 Sep 2019
A Robust Hybrid Approach for Textual Document Classification
Muhammad Nabeel Asim
Muhammad Usman Ghani Khan
M. I. Malik
Andreas Dengel
Sheraz Ahmed
56
18
0
12 Sep 2019
Compact Autoregressive Network
Di Wang
Feiqing Huang
Jingyu Zhao
Guodong Li
Guangjian Tian
28
3
0
06 Sep 2019
Knowledge Distillation for End-to-End Person Search
Bharti Munjal
Fabio Galasso
S. Amin
FedML
119
17
0
03 Sep 2019
On the Effectiveness of Low-Rank Matrix Factorization for LSTM Model Compression
Genta Indra Winata
Andrea Madotto
Jamin Shin
Elham J. Barezi
Pascale Fung
64
29
0
27 Aug 2019
Patient Knowledge Distillation for BERT Model Compression
S. Sun
Yu Cheng
Zhe Gan
Jingjing Liu
151
843
0
25 Aug 2019
Exploiting Channel Similarity for Accelerating Deep Convolutional Neural Networks
Yunxiang Zhang
Chenglong Zhao
Bingbing Ni
Jian Zhang
Haoran Deng
50
2
0
06 Aug 2019
Exploiting the Redundancy in Convolutional Filters for Parameter Reduction
Kumara Kahatapitiya
Ranga Rodrigo
25
0
0
26 Jul 2019
Highlight Every Step: Knowledge Distillation via Collaborative Teaching
Haoran Zhao
Changrui Chen
Junyu Dong
Xin Sun
Zihe Dong
80
59
0
23 Jul 2019
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Yehui Tang
Shan You
Chang Xu
Boxin Shi
Chao Xu
85
11
0
13 Jul 2019
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning
Wenxiao Wang
Cong Fu
Jishun Guo
Deng Cai
Xiaofei He
VLM
64
72
0
25 Jun 2019
ADA-Tucker: Compressing Deep Neural Networks via Adaptive Dimension Adjustment Tucker Decomposition
Zhisheng Zhong
Fangyin Wei
Zhouchen Lin
Chao Zhang
62
29
0
18 Jun 2019
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
121
36
0
07 Jun 2019
OpenEI: An Open Framework for Edge Intelligence
Xingzhou Zhang
Yifan Wang
Sidi Lu
Liangkai Liu
Lanyu Xu
Weisong Shi
82
101
0
05 Jun 2019
Intrinsic dimension of data representations in deep neural networks
A. Ansuini
Alessandro Laio
Jakob H. Macke
D. Zoccolan
AI4CE
117
279
0
29 May 2019
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization
S. Kwon
Dongsoo Lee
Byeongwook Kim
Parichay Kapoor
Baeseong Park
Gu-Yeon Wei
MQ
74
51
0
24 May 2019
A Generative Model for Sampling High-Performance and Diverse Weights for Neural Networks
Lior Deutsch
Erik Nijkamp
Yu Yang
71
16
0
07 May 2019
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Hattie Zhou
Janice Lan
Rosanne Liu
J. Yosinski
UQCV
103
389
0
03 May 2019
Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars
Alexandros Kouris
Stylianos I. Venieris
Michail Rizakis
C. Bouganis
AI4TS
44
12
0
02 May 2019
Deep Anchored Convolutional Neural Networks
Jiahui Huang
Kshitij Dwivedi
Gemma Roig
38
1
0
22 Apr 2019
Intermittent Learning: On-Device Machine Learning on Intermittently Powered System
Seulki Lee
Bashima Islam
Yubo Luo
S. Nirjon
23
35
0
21 Apr 2019
Shakeout: A New Approach to Regularized Deep Neural Network Training
Guoliang Kang
Jun Yu Li
Dacheng Tao
59
59
0
13 Apr 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning
Xin Wang
Feng Yu
Ruth Wang
Trevor Darrell
Joseph E. Gonzalez
83
105
0
11 Apr 2019
Compressing deep neural networks by matrix product operators
Ze-Feng Gao
Song Cheng
Rong-Qiang He
Z. Xie
Hui-Hai Zhao
Zhong-Yi Lu
Tao Xiang
85
38
0
11 Apr 2019
Knowledge Distillation For Recurrent Neural Network Language Modeling With Trust Regularization
Yangyang Shi
M. Hwang
X. Lei
Haoyu Sheng
152
25
0
08 Apr 2019
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
Xiaohan Ding
Guiguang Ding
Yuchen Guo
Jiawei Han
3DPC
75
185
0
08 Apr 2019
Fully Learnable Group Convolution for Acceleration of Deep Neural Networks
Xijun Wang
Meina Kan
Shiguang Shan
Xilin Chen
72
71
0
31 Mar 2019
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
Zechun Liu
Haoyuan Mu
Xiangyu Zhang
Zichao Guo
Xin Yang
K. Cheng
Jian Sun
104
565
0
25 Mar 2019
Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations
Tri Dao
Albert Gu
Matthew Eichhorn
Atri Rudra
Christopher Ré
144
108
0
14 Mar 2019
Cascaded Projection: End-to-End Network Compression and Acceleration
Breton L. Minnehan
Andreas E. Savakis
54
26
0
12 Mar 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
97
164
0
07 Mar 2019
Previous
1
2
3
4
5
6
7
8
Next