ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.0543
  4. Cited By
Predicting Parameters in Deep Learning
v1v2 (latest)

Predicting Parameters in Deep Learning

3 June 2013
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
    OOD
ArXiv (abs)PDFHTML

Papers citing "Predicting Parameters in Deep Learning"

50 / 392 papers shown
Title
Structural plasticity on an accelerated analog neuromorphic hardware
  system
Structural plasticity on an accelerated analog neuromorphic hardware system
Sebastian Billaudelle
Benjamin Cramer
Mihai A. Petrovici
Korbinian Schreiber
David Kappel
Johannes Schemmel
K. Meier
63
24
0
27 Dec 2019
Taxonomy and Evaluation of Structured Compression of Convolutional
  Neural Networks
Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks
Andrey Kuzmin
Markus Nagel
Saurabh Pitre
Sandeep Pendyam
Tijmen Blankevoort
Max Welling
75
27
0
20 Dec 2019
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Seul-Ki Yeom
P. Seegerer
Sebastian Lapuschkin
Alexander Binder
Simon Wiedemann
K. Müller
Wojciech Samek
CVBM
81
210
0
18 Dec 2019
Tangent Space Separability in Feedforward Neural Networks
Tangent Space Separability in Feedforward Neural Networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
50
3
0
18 Dec 2019
An Improving Framework of regularization for Network Compression
An Improving Framework of regularization for Network Compression
E. Zhenqian
Weiguo Gao
AI4CE
38
0
0
11 Dec 2019
Compressing 3DCNNs Based on Tensor Train Decomposition
Compressing 3DCNNs Based on Tensor Train Decomposition
Dingheng Wang
Guangshe Zhao
Guoqi Li
Lei Deng
Yang Wu
64
6
0
08 Dec 2019
Neural Machine Translation: A Review and Survey
Neural Machine Translation: A Review and Survey
Felix Stahlberg
3DVAI4TSMedIm
142
332
0
04 Dec 2019
Online Knowledge Distillation with Diverse Peers
Online Knowledge Distillation with Diverse Peers
Defang Chen
Jian-Ping Mei
Can Wang
Yan Feng
Chun-Yen Chen
FedML
87
305
0
01 Dec 2019
Pruning at a Glance: Global Neural Pruning for Model Compression
Pruning at a Glance: Global Neural Pruning for Model Compression
Abdullah Salama
O. Ostapenko
T. Klein
Moin Nabi
VLM
47
12
0
30 Nov 2019
Structured Multi-Hashing for Model Compression
Structured Multi-Hashing for Model Compression
Elad Eban
Yair Movshovitz-Attias
Hao Wu
Mark Sandler
Andrew Poon
Yerlan Idelbayev
M. A. Carreira-Perpiñán
78
18
0
25 Nov 2019
Knowledge Representing: Efficient, Sparse Representation of Prior
  Knowledge for Knowledge Distillation
Knowledge Representing: Efficient, Sparse Representation of Prior Knowledge for Knowledge Distillation
Junjie Liu
Dongchao Wen
Hongxing Gao
Wei Tao
Tse-Wei Chen
Kinya Osa
Masami Kato
81
21
0
13 Nov 2019
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
A. Yaguchi
Taiji Suzuki
Shuhei Nitta
Y. Sakata
A. Tanizawa
88
9
0
29 Oct 2019
Deep Learning at the Edge
Deep Learning at the Edge
Sahar Voghoei
N. Tonekaboni
Jason G. Wallace
H. Arabnia
183
41
0
22 Oct 2019
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural
  Networks
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
92
18
0
11 Oct 2019
DEVDAN: Deep Evolving Denoising Autoencoder
DEVDAN: Deep Evolving Denoising Autoencoder
Andri Ashfahani
Mahardhika Pratama
E. Lughofer
Yew-Soon Ong
109
99
0
08 Oct 2019
Additive Powers-of-Two Quantization: An Efficient Non-uniform
  Discretization for Neural Networks
Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural Networks
Yuhang Li
Xin Dong
Wei Wang
MQ
84
260
0
28 Sep 2019
Training convolutional neural networks with cheap convolutions and
  online distillation
Training convolutional neural networks with cheap convolutions and online distillation
Jiao Xie
Shaohui Lin
Yichen Zhang
Linkai Luo
63
12
0
28 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for
  Embedded Neural Networks
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAMLMQ
98
18
0
27 Sep 2019
Stochastic Conditional Generative Networks with Basis Decomposition
Stochastic Conditional Generative Networks with Basis Decomposition
Ze Wang
Xiuyuan Cheng
Guillermo Sapiro
Qiang Qiu
GAN
139
18
0
25 Sep 2019
Compression based bound for non-compressed network: unified
  generalization error analysis of large compressible deep neural network
Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network
Taiji Suzuki
Hiroshi Abe
Tomoaki Nishimura
AI4CE
81
44
0
25 Sep 2019
A Robust Hybrid Approach for Textual Document Classification
A Robust Hybrid Approach for Textual Document Classification
Muhammad Nabeel Asim
Muhammad Usman Ghani Khan
M. I. Malik
Andreas Dengel
Sheraz Ahmed
56
18
0
12 Sep 2019
Compact Autoregressive Network
Compact Autoregressive Network
Di Wang
Feiqing Huang
Jingyu Zhao
Guodong Li
Guangjian Tian
28
3
0
06 Sep 2019
Knowledge Distillation for End-to-End Person Search
Knowledge Distillation for End-to-End Person Search
Bharti Munjal
Fabio Galasso
S. Amin
FedML
119
17
0
03 Sep 2019
On the Effectiveness of Low-Rank Matrix Factorization for LSTM Model
  Compression
On the Effectiveness of Low-Rank Matrix Factorization for LSTM Model Compression
Genta Indra Winata
Andrea Madotto
Jamin Shin
Elham J. Barezi
Pascale Fung
64
29
0
27 Aug 2019
Patient Knowledge Distillation for BERT Model Compression
Patient Knowledge Distillation for BERT Model Compression
S. Sun
Yu Cheng
Zhe Gan
Jingjing Liu
151
843
0
25 Aug 2019
Exploiting Channel Similarity for Accelerating Deep Convolutional Neural
  Networks
Exploiting Channel Similarity for Accelerating Deep Convolutional Neural Networks
Yunxiang Zhang
Chenglong Zhao
Bingbing Ni
Jian Zhang
Haoran Deng
50
2
0
06 Aug 2019
Exploiting the Redundancy in Convolutional Filters for Parameter
  Reduction
Exploiting the Redundancy in Convolutional Filters for Parameter Reduction
Kumara Kahatapitiya
Ranga Rodrigo
25
0
0
26 Jul 2019
Highlight Every Step: Knowledge Distillation via Collaborative Teaching
Highlight Every Step: Knowledge Distillation via Collaborative Teaching
Haoran Zhao
Changrui Chen
Junyu Dong
Xin Sun
Zihe Dong
80
59
0
23 Jul 2019
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Yehui Tang
Shan You
Chang Xu
Boxin Shi
Chao Xu
85
11
0
13 Jul 2019
COP: Customized Deep Model Compression via Regularized Correlation-Based
  Filter-Level Pruning
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning
Wenxiao Wang
Cong Fu
Jishun Guo
Deng Cai
Xiaofei He
VLM
64
72
0
25 Jun 2019
ADA-Tucker: Compressing Deep Neural Networks via Adaptive Dimension
  Adjustment Tucker Decomposition
ADA-Tucker: Compressing Deep Neural Networks via Adaptive Dimension Adjustment Tucker Decomposition
Zhisheng Zhong
Fangyin Wei
Zhouchen Lin
Chao Zhang
62
29
0
18 Jun 2019
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
121
36
0
07 Jun 2019
OpenEI: An Open Framework for Edge Intelligence
OpenEI: An Open Framework for Edge Intelligence
Xingzhou Zhang
Yifan Wang
Sidi Lu
Liangkai Liu
Lanyu Xu
Weisong Shi
82
101
0
05 Jun 2019
Intrinsic dimension of data representations in deep neural networks
Intrinsic dimension of data representations in deep neural networks
A. Ansuini
Alessandro Laio
Jakob H. Macke
D. Zoccolan
AI4CE
117
279
0
29 May 2019
Structured Compression by Weight Encryption for Unstructured Pruning and
  Quantization
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization
S. Kwon
Dongsoo Lee
Byeongwook Kim
Parichay Kapoor
Baeseong Park
Gu-Yeon Wei
MQ
74
51
0
24 May 2019
A Generative Model for Sampling High-Performance and Diverse Weights for
  Neural Networks
A Generative Model for Sampling High-Performance and Diverse Weights for Neural Networks
Lior Deutsch
Erik Nijkamp
Yu Yang
71
16
0
07 May 2019
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Hattie Zhou
Janice Lan
Rosanne Liu
J. Yosinski
UQCV
103
389
0
03 May 2019
Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction
  in Self-Driving Cars
Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars
Alexandros Kouris
Stylianos I. Venieris
Michail Rizakis
C. Bouganis
AI4TS
44
12
0
02 May 2019
Deep Anchored Convolutional Neural Networks
Deep Anchored Convolutional Neural Networks
Jiahui Huang
Kshitij Dwivedi
Gemma Roig
38
1
0
22 Apr 2019
Intermittent Learning: On-Device Machine Learning on Intermittently
  Powered System
Intermittent Learning: On-Device Machine Learning on Intermittently Powered System
Seulki Lee
Bashima Islam
Yubo Luo
S. Nirjon
23
35
0
21 Apr 2019
Shakeout: A New Approach to Regularized Deep Neural Network Training
Shakeout: A New Approach to Regularized Deep Neural Network Training
Guoliang Kang
Jun Yu Li
Dacheng Tao
59
59
0
13 Apr 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning
Xin Wang
Feng Yu
Ruth Wang
Trevor Darrell
Joseph E. Gonzalez
83
105
0
11 Apr 2019
Compressing deep neural networks by matrix product operators
Compressing deep neural networks by matrix product operators
Ze-Feng Gao
Song Cheng
Rong-Qiang He
Z. Xie
Hui-Hai Zhao
Zhong-Yi Lu
Tao Xiang
85
38
0
11 Apr 2019
Knowledge Distillation For Recurrent Neural Network Language Modeling
  With Trust Regularization
Knowledge Distillation For Recurrent Neural Network Language Modeling With Trust Regularization
Yangyang Shi
M. Hwang
X. Lei
Haoyu Sheng
152
25
0
08 Apr 2019
Centripetal SGD for Pruning Very Deep Convolutional Networks with
  Complicated Structure
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
Xiaohan Ding
Guiguang Ding
Yuchen Guo
Jiawei Han
3DPC
75
185
0
08 Apr 2019
Fully Learnable Group Convolution for Acceleration of Deep Neural
  Networks
Fully Learnable Group Convolution for Acceleration of Deep Neural Networks
Xijun Wang
Meina Kan
Shiguang Shan
Xilin Chen
72
71
0
31 Mar 2019
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
Zechun Liu
Haoyuan Mu
Xiangyu Zhang
Zichao Guo
Xin Yang
K. Cheng
Jian Sun
104
565
0
25 Mar 2019
Learning Fast Algorithms for Linear Transforms Using Butterfly
  Factorizations
Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations
Tri Dao
Albert Gu
Matthew Eichhorn
Atri Rudra
Christopher Ré
144
108
0
14 Mar 2019
Cascaded Projection: End-to-End Network Compression and Acceleration
Cascaded Projection: End-to-End Network Compression and Acceleration
Breton L. Minnehan
Andreas E. Savakis
54
26
0
12 Mar 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
97
164
0
07 Mar 2019
Previous
12345678
Next