Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1305.4825
Cited By
Learning subgaussian classes : Upper and minimax bounds
21 May 2013
Guillaume Lecué
S. Mendelson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning subgaussian classes : Upper and minimax bounds"
23 / 23 papers shown
Title
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
54
8
0
08 Feb 2024
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
88
9
0
21 Oct 2022
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
34
27
0
16 Jun 2022
Exponential Tail Local Rademacher Complexity Risk Bounds Without the Bernstein Condition
Varun Kanade
Patrick Rebeschini
Tomas Vaskevicius
39
10
0
23 Feb 2022
Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption
Lihu Xu
Fang Yao
Qiuran Yao
Huiming Zhang
38
10
0
10 Jan 2022
A spectral algorithm for robust regression with subgaussian rates
Jules Depersin
23
14
0
12 Jul 2020
Empirical Risk Minimization under Random Censorship: Theory and Practice
Guillaume Ausset
Stéphan Clémençon
François Portier
20
5
0
05 Jun 2019
Robust high dimensional learning for Lipschitz and convex losses
Geoffrey Chinot
Guillaume Lecué
M. Lerasle
29
18
0
10 May 2019
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
16
47
0
09 Aug 2018
Localized Gaussian width of
M
M
M
-convex hulls with applications to Lasso and convex aggregation
Pierre C. Bellec
21
17
0
30 May 2017
Estimation bounds and sharp oracle inequalities of regularized procedures with Lipschitz loss functions
Pierre Alquier
V. Cottet
Guillaume Lecué
40
58
0
05 Feb 2017
Learning from MOM's principles: Le Cam's approach
Lecué Guillaume
Lerasle Matthieu
38
51
0
08 Jan 2017
Risk minimization by median-of-means tournaments
Gabor Lugosi
S. Mendelson
16
130
0
02 Aug 2016
On optimality of empirical risk minimization in linear aggregation
Adrien Saumard
28
20
0
11 May 2016
High-Dimensional Estimation of Structured Signals from Non-Linear Observations with General Convex Loss Functions
Martin Genzel
30
45
0
10 Feb 2016
`local' vs. `global' parameters -- breaking the gaussian complexity barrier
S. Mendelson
35
24
0
09 Apr 2015
On aggregation for heavy-tailed classes
S. Mendelson
49
28
0
25 Feb 2015
The generalized Lasso with non-linear observations
Y. Plan
Roman Vershynin
41
195
0
13 Feb 2015
Learning without Concentration for General Loss Functions
S. Mendelson
63
65
0
13 Oct 2014
Geometric Inference for General High-Dimensional Linear Inverse Problems
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
54
27
0
17 Apr 2014
Performance of empirical risk minimization in linear aggregation
Guillaume Lecué
S. Mendelson
FedML
55
40
0
24 Feb 2014
Learning without Concentration
S. Mendelson
92
333
0
01 Jan 2014
Concentration in unbounded metric spaces and algorithmic stability
A. Kontorovich
35
53
0
04 Sep 2013
1