ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.03182
30
10

Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption

10 January 2022
Lihu Xu
Fang Yao
Qiuran Yao
Huiming Zhang
ArXivPDFHTML
Abstract

There has been a surge of interest in developing robust estimators for models with heavy-tailed and bounded variance data in statistics and machine learning, while few works impose unbounded variance. This paper proposes two type of robust estimators, the ridge log-truncated M-estimator and the elastic net log-truncated M-estimator. The first estimator is applied to convex regressions such as quantile regression and generalized linear models, while the other one is applied to high dimensional non-convex learning problems such as regressions via deep neural networks. Simulations and real data analysis demonstrate the {robustness} of log-truncated estimations over standard estimations.

View on arXiv
Comments on this paper