ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.1887
  4. Cited By
On particle Gibbs sampling
v1v2 (latest)

On particle Gibbs sampling

6 April 2013
Nicolas Chopin
Sumeetpal S. Singh
ArXiv (abs)PDFHTML

Papers citing "On particle Gibbs sampling"

37 / 37 papers shown
Title
Conditioning diffusion models by explicit forward-backward bridging
Conditioning diffusion models by explicit forward-backward bridging
Adrien Corenflos
Zheng Zhao
Simo Särkkä
Jens Sjölund
Thomas B. Schön
DiffM
140
6
0
22 May 2024
Particle Gibbs for Likelihood-Free Inference of State Space Models with
  Application to Stochastic Volatility
Particle Gibbs for Likelihood-Free Inference of State Space Models with Application to Stochastic Volatility
Zhaoran Hou
Samuel W.K. Wong
51
0
0
20 Dec 2023
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Adrien Corenflos
Simo Särkkä
81
0
0
01 Mar 2023
State and parameter learning with PaRIS particle Gibbs
State and parameter learning with PaRIS particle Gibbs
Gabriel Victorino Cardoso
Yazid Janati
Sylvain Le Corff
Eric Moulines
Jimmy Olsson
84
6
0
02 Jan 2023
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
72
7
0
04 Feb 2022
The Coupled Rejection Sampler
The Coupled Rejection Sampler
Adrien Corenflos
Simo Särkkä
49
4
0
24 Jan 2022
On Unbiased Score Estimation for Partially Observed Diffusions
On Unbiased Score Estimation for Partially Observed Diffusions
J. Heng
J. Houssineau
Ajay Jasra
70
11
0
11 May 2021
Unbiased approximation of posteriors via coupled particle Markov chain
  Monte Carlo
Unbiased approximation of posteriors via coupled particle Markov chain Monte Carlo
W. van den Boom
Ajay Jasra
M. De Iorio
A. Beskos
J. Eriksson
79
9
0
09 Mar 2021
Conditional particle filters with diffuse initial distributions
Conditional particle filters with diffuse initial distributions
Santeri Karppinen
M. Vihola
62
3
0
26 Jun 2020
Forecasting observables with particle filters: Any filter will do!
Forecasting observables with particle filters: Any filter will do!
Patrick Leung
Catherine S. Forbes
G. Martin
Brendan P. M. McCabe
AI4TS
48
0
0
20 Aug 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
58
49
0
23 May 2019
Imputing Missing Events in Continuous-Time Event Streams
Imputing Missing Events in Continuous-Time Event Streams
Hongyuan Mei
Guanghui Qin
Jason Eisner
AI4TS
75
41
0
14 May 2019
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
80
22
0
05 Feb 2019
Central Limit Theorems for Coupled Particle Filters
Central Limit Theorems for Coupled Particle Filters
Ajay Jasra
Fangyuan Yu
66
18
0
11 Oct 2018
Unbiased inference for discretely observed hidden Markov model
  diffusions
Unbiased inference for discretely observed hidden Markov model diffusions
Neil K. Chada
Jordan Franks
Ajay Jasra
K. Law
M. Vihola
109
29
0
26 Jul 2018
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
105
9
0
25 Jun 2018
Coupled conditional backward sampling particle filter
Coupled conditional backward sampling particle filter
Anthony Lee
Sumeetpal S. Singh
M. Vihola
111
33
0
15 Jun 2018
Bayesian learning of weakly structural Markov graph laws using
  sequential Monte Carlo methods
Bayesian learning of weakly structural Markov graph laws using sequential Monte Carlo methods
Jimmy Olsson
T. Pavlenko
Felix L. Rios
49
4
0
31 May 2018
Particle Filters and Data Assimilation
Particle Filters and Data Assimilation
Paul Fearnhead
H. Kunsch
83
82
0
13 Sep 2017
Graphical posterior predictive classifier: Bayesian model averaging with
  particle Gibbs
Graphical posterior predictive classifier: Bayesian model averaging with particle Gibbs
T. Pavlenko
Felix L. Rios
UQCV
55
1
0
21 Jul 2017
Advanced Multilevel Monte Carlo Methods
Advanced Multilevel Monte Carlo Methods
Ajay Jasra
K. Law
C. Suciu
70
16
0
24 Apr 2017
Analysis, detection and correction of misspecified discrete time state
  space models
Analysis, detection and correction of misspecified discrete time state space models
Salima El Kolei
F. Patras
27
6
0
03 Apr 2017
Smoothing with Couplings of Conditional Particle Filters
Smoothing with Couplings of Conditional Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
138
55
0
08 Jan 2017
Importance sampling type estimators based on approximate marginal MCMC
Importance sampling type estimators based on approximate marginal MCMC
M. Vihola
Jouni Helske
Jordan Franks
110
25
0
08 Sep 2016
Coupling of Particle Filters
Coupling of Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
101
24
0
03 Jun 2016
On Coupling Particle Filter Trajectories
On Coupling Particle Filter Trajectories
Deborshee Sen
Alexandre Hoang Thiery
Ajay Jasra
106
21
0
03 Jun 2016
Multilevel Particle Filters: Normalizing Constant Estimation
Multilevel Particle Filters: Normalizing Constant Estimation
Ajay Jasra
K. Kamatani
P. P. Osei
Yan Zhou
44
25
0
16 May 2016
Interacting Particle Markov Chain Monte Carlo
Interacting Particle Markov Chain Monte Carlo
Tom Rainforth
C. A. Naesseth
Fredrik Lindsten
Brooks Paige
Jan-Willem van de Meent
Arnaud Doucet
Frank Wood
77
34
0
16 Feb 2016
The Gibbs Sampler with Particle Efficient Importance Sampling for
  State-Space Models
The Gibbs Sampler with Particle Efficient Importance Sampling for State-Space Models
O. Grothe
T. S. Kleppe
R. Liesenfeld
61
13
0
06 Jan 2016
Pseudo-Marginal Slice Sampling
Pseudo-Marginal Slice Sampling
Iain Murray
Matthew M. Graham
101
37
0
10 Oct 2015
Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture
  Models
Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models
Alexandre Bouchard-Côté
Arnaud Doucet
Andrew Roth
54
20
0
11 Aug 2015
Particle ancestor sampling for near-degenerate or intractable state
  transition models
Particle ancestor sampling for near-degenerate or intractable state transition models
Fredrik Lindsten
P. Bunch
Sumeetpal S. Singh
Thomas B. Schon
60
18
0
23 May 2015
Markov Interacting Importance Samplers
Markov Interacting Importance Samplers
Eduardo F. Mendes
Marcel Scharth
Robert Kohn
VLM
85
3
0
25 Feb 2015
A Sharp First Order Analysis of Feynman-Kac Particle Models
A Sharp First Order Analysis of Feynman-Kac Particle Models
H. Chan
P. Del Moral
Ajay Jasra
95
7
0
14 Nov 2014
Perfect simulation using atomic regeneration with application to
  Sequential Monte Carlo
Perfect simulation using atomic regeneration with application to Sequential Monte Carlo
Anthony Lee
Arnaud Doucet
K. Latuszyñski
111
15
0
22 Jul 2014
Uniform ergodicity of the Particle Gibbs sampler
Uniform ergodicity of the Particle Gibbs sampler
Fredrik Lindsten
Randal Douc
Eric Moulines
130
54
0
03 Jan 2014
Particle Gibbs with Ancestor Sampling
Particle Gibbs with Ancestor Sampling
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
136
252
0
03 Jan 2014
1