Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1303.0383
Cited By
Local Gaussian process approximation for large computer experiments
2 March 2013
R. Gramacy
D. Apley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Gaussian process approximation for large computer experiments"
39 / 39 papers shown
Title
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
68
13
0
03 Jan 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
41
1
0
31 Dec 2024
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
132
0
0
31 Dec 2024
Posterior Covariance Structures in Gaussian Processes
Difeng Cai
Edmond Chow
Yuanzhe Xi
37
2
0
14 Aug 2024
The inverse Kalman filter
X. Fang
Mengyang Gu
29
0
0
14 Jul 2024
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
32
1
0
20 May 2024
Constraint-Guided Online Data Selection for Scalable Data-Driven Safety Filters in Uncertain Robotic Systems
Jason J. Choi
F. Castañeda
Wonsuhk Jung
Bike Zhang
Claire J. Tomlin
K. Sreenath
35
3
0
23 Nov 2023
Minibatch Markov chain Monte Carlo Algorithms for Fitting Gaussian Processes
Matthew J. Heaton
Jacob A. Johnson
8
1
0
26 Oct 2023
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
6
1
0
25 May 2023
Incorporating Subsampling into Bayesian Models for High-Dimensional Spatial Data
Saumajit Saha
J. Bradley
19
5
0
22 May 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
23
2
0
17 May 2023
Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes
Fan Wu
Zhanhong Cheng
Huiyu Chen
T. Qiu
Lijun Sun
27
3
0
04 Mar 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
19
1
0
20 Jan 2023
Locally Smoothed Gaussian Process Regression
Davit Gogolashvili
B. Kozyrskiy
Maurizio Filippone
14
8
0
18 Oct 2022
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
31
1
0
17 Oct 2022
Optimal Sensor Placement in Body Surface Networks using Gaussian Processes
Emad Alenany
Changqing Cheng
11
0
0
07 Sep 2022
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
17
13
0
15 Sep 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
35
25
0
26 Jun 2021
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
26
5
0
04 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
15
6
0
24 May 2021
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
28
59
0
07 May 2021
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
M. Ludkovski
28
7
0
01 Dec 2020
KrigHedge: Gaussian Process Surrogates for Delta Hedging
M. Ludkovski
Yuri F. Saporito
35
5
0
16 Oct 2020
Scaled Vecchia approximation for fast computer-model emulation
Matthias Katzfuss
J. Guinness
E. Lawrence
14
40
0
01 May 2020
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
M. Peruzzi
Sudipto Banerjee
Andrew O. Finley
30
51
0
25 Mar 2020
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
14
22
0
18 Feb 2020
Computer Model Emulation with High-Dimensional Functional Output in Large-Scale Observing System Uncertainty Experiments
P. Ma
Anirban Mondal
B. Konomi
J. Hobbs
J. Song
E. Kang
15
13
0
21 Nov 2019
Iterative Construction of Gaussian Process Surrogate Models for Bayesian Inference
Leen Alawieh
J. Goodman
J. Bell
33
4
0
17 Nov 2019
Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of closure relationships integrated into thermal-hydraulic system codes
Guillaume Damblin
P. Gaillard
14
20
0
13 Feb 2019
Towards a Complete Picture of Stationary Covariance Functions on Spheres Cross Time
P. White
Emilio Porcu
15
8
0
11 Jul 2018
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes
Andrew O. Finley
A. Datta
B. Cook
Douglas C. Morton
Hans-Erik Andersen
Sudipto Banerjee
35
152
0
01 Feb 2017
Practical heteroskedastic Gaussian process modeling for large simulation experiments
M. Binois
R. Gramacy
M. Ludkovski
27
181
0
17 Nov 2016
Permutation and Grouping Methods for Sharpening Gaussian Process Approximations
J. Guinness
10
148
0
17 Sep 2016
Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case
F. Bachoc
18
31
0
05 Dec 2014
Speeding up neighborhood search in local Gaussian process prediction
R. Gramacy
B. Haaland
35
49
0
30 Aug 2014
A general decision framework for structuring computation using Data Directional Scaling to process massive similarity matrices
Daniel J. Lawson
N. Adams
38
4
0
17 Mar 2014
Massively parallel approximate Gaussian process regression
R. Gramacy
Jarad Niemi
R. Weiss
56
47
0
18 Oct 2013
1