ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.5182
51
47

Massively parallel approximate Gaussian process regression

18 October 2013
R. Gramacy
Jarad Niemi
R. Weiss
ArXivPDFHTML
Abstract

We explore how the big-three computing paradigms -- symmetric multi-processor (SMC), graphical processing units (GPUs), and cluster computing -- can together be brought to bare on large-data Gaussian processes (GP) regression problems via a careful implementation of a newly developed local approximation scheme. Our methodological contribution focuses primarily on GPU computation, as this requires the most care and also provides the largest performance boost. However, in our empirical work we study the relative merits of all three paradigms to determine how best to combine them. The paper concludes with two case studies. One is a real data fluid-dynamics computer experiment which benefits from the local nature of our approximation; the second is a synthetic data example designed to find the largest design for which (accurate) GP emulation can performed on a commensurate predictive set under an hour.

View on arXiv
Comments on this paper