ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.3566
  4. Cited By
Learning Equivalence Classes of Bayesian Networks Structures

Learning Equivalence Classes of Bayesian Networks Structures

13 February 2013
D. M. Chickering
ArXivPDFHTML

Papers citing "Learning Equivalence Classes of Bayesian Networks Structures"

33 / 33 papers shown
Title
Practically Effective Adjustment Variable Selection in Causal Inference
Practically Effective Adjustment Variable Selection in Causal Inference
Atsushi Noda
Takashi Isozaki
66
0
0
04 Feb 2025
Causal Inference with Large Language Model: A Survey
Causal Inference with Large Language Model: A Survey
Jing Ma
CML
LRM
83
8
0
15 Sep 2024
Towards Automated Causal Discovery: a case study on 5G telecommunication
  data
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
28
0
0
22 Feb 2024
Online Handbook of Argumentation for AI: Volume 4
Online Handbook of Argumentation for AI: Volume 4
Lars Bengel
Lydia Blümel
Elfia Bezou-Vrakatseli
Federico Castagna
Giulia DÁgostino
...
Daphne Odekerken
Fabrizio Russo
Stefan Sarkadi
Madeleine Waller
A. Xydis
20
0
0
20 Dec 2023
Learning nonparametric DAGs with incremental information via high-order
  HSIC
Learning nonparametric DAGs with incremental information via high-order HSIC
Yafei Wang
Jianguo Liu
CML
19
0
0
11 Aug 2023
Case Studies of Causal Discovery from IT Monitoring Time Series
Case Studies of Causal Discovery from IT Monitoring Time Series
Ali Aït-Bachir
Charles K. Assaad
Christophe de Bignicourt
Emilie Devijver
Simon Ferreira
Éric Gaussier
Hosein Mohanna
Lei Zan
CML
AI4TS
23
8
0
28 Jul 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
32
72
0
21 May 2023
AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
  and Challenges
AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges
Qian Cheng
Doyen Sahoo
Amrita Saha
Wenjing Yang
Chenghao Liu
Gerald Woo
Manpreet Singh
Silvio Saverese
S. Hoi
32
17
0
10 Apr 2023
Distinguishing Cause from Effect on Categorical Data: The Uniform
  Channel Model
Distinguishing Cause from Effect on Categorical Data: The Uniform Channel Model
Mário A. T. Figueiredo
Catarina A. Oliveira
CML
27
1
0
14 Mar 2023
Brain Effective Connectome based on fMRI and DTI Data: Bayesian Causal
  Learning and Assessment
Brain Effective Connectome based on fMRI and DTI Data: Bayesian Causal Learning and Assessment
Abdolmahdi Bagheri
Mahdi Dehshiri
Yamin Bagheri
Alireza Akhondi-Asl
Babak Nadjar Araabi
6
4
0
10 Feb 2023
A Causal Approach to Detecting Multivariate Time-series Anomalies and
  Root Causes
A Causal Approach to Detecting Multivariate Time-series Anomalies and Root Causes
Wenzhuo Yang
Kun Zhang
S. Hoi
AI4TS
CML
20
9
0
30 Jun 2022
Counterfactual Fairness with Partially Known Causal Graph
Counterfactual Fairness with Partially Known Causal Graph
Aoqi Zuo
Susan Wei
Tongliang Liu
Bo Han
Kun Zhang
Mingming Gong
OOD
FaML
16
19
0
27 May 2022
Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent
  DAGs with Applications
Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs with Applications
Marcel Wienöbst
Max Bannach
Maciej Liskiewicz
16
9
0
05 May 2022
Order-based Structure Learning without Score Equivalence
Order-based Structure Learning without Score Equivalence
Hyunwoong Chang
James Cai
Quan Zhou
CML
OffRL
16
3
0
10 Feb 2022
A survey of Bayesian Network structure learning
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
18
181
0
23 Sep 2021
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
16
5
0
08 Jun 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To
  Game
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
10
136
0
26 Feb 2021
A Tutorial on Learning With Bayesian Networks
A Tutorial on Learning With Bayesian Networks
David Heckerman
CML
21
3,513
0
01 Feb 2020
Causality-based Feature Selection: Methods and Evaluations
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
16
92
0
17 Nov 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
28
332
0
30 Jan 2019
Efficient Sampling and Structure Learning of Bayesian Networks
Efficient Sampling and Structure Learning of Bayesian Networks
Jack Kuipers
Polina Suter
G. Moffa
TPM
CML
13
69
0
21 Mar 2018
Causality on Longitudinal Data: Stable Specification Search in
  Constrained Structural Equation Modeling
Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling
R. Rahmadi
P. Groot
Marieke HC van Rijn
Jan AJG van den Brand
M. Heins
H. Knoop
Tom Heskes
CML
19
15
0
22 May 2016
High-dimensional consistency in score-based and hybrid structure
  learning
High-dimensional consistency in score-based and hybrid structure learning
Preetam Nandy
Alain Hauser
Marloes H. Maathuis
39
128
0
09 Jul 2015
Parametric Modelling of Multivariate Count Data Using Probabilistic
  Graphical Models
Parametric Modelling of Multivariate Count Data Using Probabilistic Graphical Models
P. Fernique
Jean-Baptiste Durand
Y. Guédon
34
0
0
16 Dec 2013
SparsityBoost: A New Scoring Function for Learning Bayesian Network
  Structure
SparsityBoost: A New Scoring Function for Learning Bayesian Network Structure
Eliot Brenner
David Sontag
49
41
0
26 Sep 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical
  Data
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
43
3,969
0
27 Feb 2013
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
216
626
0
20 Feb 2013
A Transformational Characterization of Equivalent Bayesian Network
  Structures
A Transformational Characterization of Equivalent Bayesian Network Structures
D. M. Chickering
151
416
0
20 Feb 2013
Enumerating Markov Equivalence Classes of Acyclic Digraph Models
Enumerating Markov Equivalence Classes of Acyclic Digraph Models
S. Gillispie
M. Perlman
63
102
0
10 Jan 2013
On the Number of Experiments Sufficient and in the Worst Case Necessary
  to Identify All Causal Relations Among N Variables
On the Number of Experiments Sufficient and in the Worst Case Necessary to Identify All Causal Relations Among N Variables
F. Eberhardt
Clark Glymour
R. Scheines
44
152
0
04 Jul 2012
Learning the Structure and Parameters of Large-Population Graphical
  Games from Behavioral Data
Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data
Jean Honorio
Luis E. Ortiz
CML
30
40
0
16 Jun 2012
Characterization and Greedy Learning of Interventional Markov
  Equivalence Classes of Directed Acyclic Graphs
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
Alain Hauser
Peter Buhlmann
CML
43
420
0
14 Apr 2011
Markov equivalence for ancestral graphs
Markov equivalence for ancestral graphs
R. A. Ali
Thomas S. Richardson
Peter Spirtes
104
111
0
25 Aug 2009
1