Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.1942
Cited By
Bayesian Optimization in a Billion Dimensions via Random Embeddings
9 January 2013
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Optimization in a Billion Dimensions via Random Embeddings"
50 / 71 papers shown
Title
Learning Low-Dimensional Embeddings for Black-Box Optimization
Riccardo Busetto
Manas Mejari
Marco Forgione
Alberto Bemporad
Dario Piga
14
0
0
02 May 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
31
0
0
10 Apr 2025
Pushing the Limits of the Reactive Affine Shaker Algorithm to Higher Dimensions
R. Battiti
M. Brunato
64
0
0
18 Feb 2025
High-Dimensional Bayesian Optimization Using Both Random and Supervised Embeddings
R. Priem
Y. Diouane
N. Bartoli
S. Dubreuil
P. Saves
62
1
0
02 Feb 2025
Active learning for affinity prediction of antibodies
Alexandra Gessner
Sebastian W. Ober
Owen Vickery
Dino Oglic
Talip Uçar
AI4CE
26
4
0
11 Jun 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
54
5
0
18 Apr 2024
Bayesian Optimization with Adaptive Kernels for Robot Control
Ruben Martinez-Cantin
9
37
0
10 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
32
17
0
03 Feb 2024
Deep Kernel and Image Quality Estimators for Optimizing Robotic Ultrasound Controller using Bayesian Optimization
Deepak Raina
S. Chandrashekhara
Richard M. Voyles
J. Wachs
S. K. Saha
45
6
0
11 Oct 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas Desautels
Yuxin Chen
30
6
0
25 Jul 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
High-Dimensional Bayesian Optimization via Semi-Supervised Learning with Optimized Unlabeled Data Sampling
Y. Yin
Yu Wang
Gang Xu
32
4
0
04 May 2023
Network Cascade Vulnerability using Constrained Bayesian Optimization
Albert Y. S. Lam
M. Anitescu
A. Subramanyam
22
0
0
27 Apr 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
21
36
0
22 Apr 2023
Gradient-Free Textual Inversion
Zhengcong Fei
Mingyuan Fan
Junshi Huang
DiffM
33
31
0
12 Apr 2023
A dynamic Bayesian optimized active recommender system for curiosity-driven Human-in-the-loop automated experiments
Arpan Biswas
Yongtao Liu
Nicole Creange
Yu-Chen Liu
S. Jesse
Jan-Chi Yang
Sergei V. Kalinin
M. Ziatdinov
Rama K Vasudevan
18
5
0
05 Apr 2023
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
20
9
0
11 Jan 2023
Falsification of Cyber-Physical Systems using Bayesian Optimization
Zahra Ramezani
Kenan Sehic
Luigi Nardi
K. Åkesson
37
1
0
14 Sep 2022
Designing Biological Sequences via Meta-Reinforcement Learning and Bayesian Optimization
Leo Feng
Padideh Nouri
Aneri Muni
Yoshua Bengio
Pierre-Luc Bacon
116
4
0
13 Sep 2022
Optimistic Optimization of Gaussian Process Samples
Julia Grosse
Cheng Zhang
Philipp Hennig
GP
16
0
0
02 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics
Mike Diessner
Joseph O’Connor
A. Wynn
S. Laizet
Yu Guan
Kevin J. Wilson
Richard D. Whalley
36
18
0
19 Jul 2022
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
Arpan Biswas
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
DRL
19
10
0
30 Jun 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
200
0
07 Jun 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
32
36
0
27 May 2022
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis
Kirill Antonov
E. Raponi
Hao Wang
Carola Doerr
25
10
0
28 Apr 2022
Randomized Maximum Likelihood via High-Dimensional Bayesian Optimization
Valentin Breaz
Richard D. Wilkinson
19
0
0
17 Apr 2022
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
Sparse Bayesian Optimization
Sulin Liu
Qing Feng
David Eriksson
Benjamin Letham
E. Bakshy
30
7
0
03 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
55
69
0
28 Jan 2022
Black-Box Tuning for Language-Model-as-a-Service
Tianxiang Sun
Yunfan Shao
Hong Qian
Xuanjing Huang
Xipeng Qiu
VLM
50
256
0
10 Jan 2022
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
22
35
0
04 Nov 2021
A comparison of mixed-variables Bayesian optimization approaches
Jhouben Cuesta Ramirez
Rodolphe Le Riche
O. Roustant
G. Perrin
Cédric Durantin
A. Glière
19
17
0
30 Oct 2021
A machine learning approach for fighting the curse of dimensionality in global optimization
J. Schumann
Alejandro M. Aragón
23
2
0
28 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
19
1
0
07 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
448
0
13 Jul 2021
High-Dimensional Bayesian Optimization with Multi-Task Learning for RocksDB
Sami Alabed
Eiko Yoneki
18
17
0
30 Mar 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
27
9
0
06 Jan 2021
Generative Melody Composition with Human-in-the-Loop Bayesian Optimization
Yijun Zhou
Yuki Koyama
Masataka Goto
Takeo Igarashi
34
21
0
07 Oct 2020
A One-bit, Comparison-Based Gradient Estimator
HanQin Cai
Daniel McKenzie
W. Yin
Zhenliang Zhang
30
17
0
06 Oct 2020
High Dimensional Bayesian Optimization Assisted by Principal Component Analysis
E. Raponi
Hao Wang
M. Bujny
S. Boria
Carola Doerr
31
31
0
02 Jul 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
40
126
0
01 Jul 2020
Sequential Gallery for Interactive Visual Design Optimization
Yuki Koyama
Issei Sato
Masataka Goto
14
76
0
08 May 2020
A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical Systems
Anthony Corso
Robert J. Moss
Mark Koren
Ritchie Lee
Mykel J. Kochenderfer
19
169
0
06 May 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
29
54
0
10 Mar 2020
1
2
Next