Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1212.2468
Cited By
Large-Sample Learning of Bayesian Networks is NP-Hard
19 October 2012
D. M. Chickering
Christopher Meek
David Heckerman
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Large-Sample Learning of Bayesian Networks is NP-Hard"
50 / 167 papers shown
Title
dotears: Scalable, consistent DAG estimation using observational and interventional data
Albert Y Xue
Jingyou Rao
S. Sankararaman
Harold Pimentel
OOD
CML
16
3
0
30 May 2023
Learning DAGs from Data with Few Root Causes
Panagiotis Misiakos
Chris Wendler
Markus Püschel
CML
37
10
0
25 May 2023
Toward Falsifying Causal Graphs Using a Permutation-Based Test
Elias Eulig
Atalanti A. Mastakouri
Patrick Blobaum
Michael W. Hardt
Dominik Janzing
13
8
0
16 May 2023
Structural Hawkes Processes for Learning Causal Structure from Discrete-Time Event Sequences
Jie Qiao
Ruichu Cai
Siyu Wu
Yu Xiang
Keli Zhang
Z. Hao
CML
AI4TS
22
5
0
10 May 2023
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Ignavier Ng
Biwei Huang
Kun Zhang
CML
21
21
0
04 Apr 2023
A Guide for Practical Use of ADMG Causal Data Augmentation
Audrey Poinsot
Alessandro Leite
CML
20
2
0
03 Apr 2023
Learning the Finer Things: Bayesian Structure Learning at the Instantiation Level
Chase Yakaboski
E. Santos
13
2
0
08 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
26
5
0
06 Mar 2023
Credal Bayesian Deep Learning
Michele Caprio
Souradeep Dutta
Kuk Jin Jang
Vivian Lin
Radoslav Ivanov
O. Sokolsky
Insup Lee
OOD
BDL
UQCV
26
18
0
19 Feb 2023
Causal Structural Learning from Time Series: A Convex Optimization Approach
S. Wei
Yao Xie
CML
27
2
0
26 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
19
1
0
16 Jan 2023
Evaluation of Induced Expert Knowledge in Causal Structure Learning by NOTEARS
Jawad Chowdhury
Rezaur Rashid
G. Terejanu
CML
18
9
0
04 Jan 2023
Reinforcement Causal Structure Learning on Order Graph
Dezhi Yang
Guoxian Yu
J. Wang
Zhe Wu
Maozu Guo
BDL
CML
26
16
0
22 Nov 2022
Sample-Specific Root Causal Inference with Latent Variables
Eric V. Strobl
Thomas A. Lasko
CML
23
8
0
27 Oct 2022
Combinatorial and algebraic perspectives on the marginal independence structure of Bayesian networks
Danai Deligeorgaki
Alex Markham
Pratik Misra
Liam Solus
17
4
0
03 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
59
78
0
16 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Mingming Gong
CML
10
4
0
07 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Mingming Gong
Kun Zhang
Javen Qinfeng Shi
22
25
0
30 Aug 2022
CausNet : Generational orderings based search for optimal Bayesian networks via dynamic programming with parent set constraints
Nand Sharma
J. Millstein
7
0
0
18 Jul 2022
Multiscale Causal Structure Learning
Gabriele DÁcunto
P. Lorenzo
Sergio Barbarossa
56
4
0
16 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Christopher Tran
Elena Zheleva
CML
17
4
0
25 Jun 2022
Explanatory causal effects for model agnostic explanations
Jiuyong Li
Ha Xuan Tran
T. Le
Lin Liu
Kui Yu
Jixue Liu
CML
17
1
0
23 Jun 2022
Causality Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
CML
GAN
OOD
12
0
0
03 Jun 2022
Causal discovery under a confounder blanket
David S. Watson
Ricardo M. A. Silva
CML
13
2
0
11 May 2022
DAG-WGAN: Causal Structure Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
GAN
OOD
CML
27
6
0
01 Apr 2022
A Density Evolution framework for Preferential Recovery of Covariance and Causal Graphs from Compressed Measurements
Muralikrishnna G. Sethuraman
Hang Zhang
Faramarz Fekri
9
0
0
17 Mar 2022
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
20
41
0
16 Mar 2022
Optimal estimation of Gaussian DAG models
Ming Gao
W. Tai
Bryon Aragam
33
9
0
25 Jan 2022
Learning Bayesian Networks in the Presence of Structural Side Information
Ehsan Mokhtarian
S. Akbari
Fatemeh Jamshidi
Jalal Etesami
Negar Kiyavash
21
16
0
20 Dec 2021
Feature Selection for Efficient Local-to-Global Bayesian Network Structure Learning
Kui Yu
Zhaolong Ling
Lin Liu
Hao Wang
Jiuyong Li
28
4
0
20 Dec 2021
The Dual PC Algorithm and the Role of Gaussianity for Structure Learning of Bayesian Networks
Enrico Giudice
Jack Kuipers
G. Moffa
CML
67
5
0
16 Dec 2021
Simultaneous Missing Value Imputation and Structure Learning with Groups
Pablo Morales-Álvarez
Wenbo Gong
A. Lamb
Simon Woodhead
Simon L. Peyton Jones
Nick Pawlowski
Miltiadis Allamanis
Cheng Zhang
9
16
0
15 Oct 2021
Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families
Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
27
17
0
10 Oct 2021
Causal Explanations of Structural Causal Models
Matej Zevcević
D. Dhami
Constantin Rothkopf
Kristian Kersting
LRM
22
2
0
05 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
24
182
0
23 Sep 2021
Transport-based Counterfactual Models
Lucas de Lara
Alberto González Sanz
Nicholas M. Asher
Laurent Risser
Jean-Michel Loubes
25
21
0
30 Aug 2021
A Stochastic Variance-Reduced Coordinate Descent Algorithm for Learning Sparse Bayesian Network from Discrete High-Dimensional Data
Nazanin Shajoonnezhad
Amin Nikanjam
19
3
0
21 Aug 2021
Improving Efficiency and Accuracy of Causal Discovery Using a Hierarchical Wrapper
Shami Nisimov
Yaniv Gurwicz
R. Y. Rohekar
Gal Novik
CML
TPM
13
6
0
11 Jul 2021
Benchpress: A Scalable and Versatile Workflow for Benchmarking Structure Learning Algorithms
Felix L. Rios
G. Moffa
Jack Kuipers
CML
27
12
0
08 Jul 2021
DAGs with No Curl: An Efficient DAG Structure Learning Approach
Yue Yu
Tian Gao
Naiyu Yin
Q. Ji
CML
22
59
0
14 Jun 2021
Causal Graph Discovery from Self and Mutually Exciting Time Series
S. Wei
Yao Xie
C. Josef
Rishikesan Kamaleswaran
CML
27
2
0
04 Jun 2021
Causal Inference in medicine and in health policy, a summary
Wenhao Zhang
Ramin Ramezani
A. Naeim
CML
OOD
9
6
0
10 May 2021
Any Part of Bayesian Network Structure Learning
Zhaolong Ling
Kui Yu
Hao Wang
Lin Liu
Jiuyong Li
17
3
0
23 Mar 2021
Partitioned hybrid learning of Bayesian network structures
Jireh Huang
Qing Zhou
TPM
19
8
0
22 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
15
136
0
26 Feb 2021
Integer Programming for Causal Structure Learning in the Presence of Latent Variables
Rui Chen
S. Dash
Tian Gao
CML
16
14
0
05 Feb 2021
Efficient Permutation Discovery in Causal DAGs
C. Squires
Joshua Amaniampong
Caroline Uhler
CML
14
4
0
06 Nov 2020
A Bregman Method for Structure Learning on Sparse Directed Acyclic Graphs
Manon Romain
Alexandre d’Aspremont
11
5
0
05 Nov 2020
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
56
71
0
18 Oct 2020
Differentiable TAN Structure Learning for Bayesian Network Classifiers
Wolfgang Roth
Franz Pernkopf
BDL
13
2
0
21 Aug 2020
Previous
1
2
3
4
Next