Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1208.2015
Cited By
Sharp analysis of low-rank kernel matrix approximations
9 August 2012
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sharp analysis of low-rank kernel matrix approximations"
43 / 43 papers shown
Title
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
P. Jaillet
75
0
0
27 Feb 2025
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
26
1
0
23 Oct 2024
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
14
3
0
28 Jun 2022
Fast Kernel Methods for Generic Lipschitz Losses via
p
p
p
-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Generalized Reference Kernel for One-class Classification
Jenni Raitoharju
Alexandros Iosifidis
15
2
0
01 May 2022
The Spectral Bias of Polynomial Neural Networks
Moulik Choraria
L. Dadi
Grigorios G. Chrysos
Julien Mairal
V. Cevher
24
18
0
27 Feb 2022
Fast Sketching of Polynomial Kernels of Polynomial Degree
Zhao-quan Song
David P. Woodruff
Zheng Yu
Lichen Zhang
13
40
0
21 Aug 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
32
440
0
19 Aug 2021
Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations
S. Cipolla
J. Gondzio
19
8
0
09 Aug 2021
Statistical Optimality and Computational Efficiency of Nyström Kernel PCA
Nicholas Sterge
Bharath K. Sriperumbudur
27
8
0
19 May 2021
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
18
42
0
21 Sep 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
21
69
0
01 Aug 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
22
66
0
17 Jun 2020
Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization
Jonathan Lacotte
Mert Pilanci
27
23
0
10 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
36
172
0
23 Apr 2020
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Michael Kapralov
Navid Nouri
Ilya P. Razenshteyn
A. Velingker
A. Zandieh
19
13
0
21 Mar 2020
Diversity sampling is an implicit regularization for kernel methods
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
19
14
0
20 Feb 2020
On the Effectiveness of Richardson Extrapolation in Machine Learning
Francis R. Bach
13
9
0
07 Feb 2020
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
23
2
0
24 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
47
626
0
14 Aug 2019
High-Dimensional Optimization in Adaptive Random Subspaces
Jonathan Lacotte
Mert Pilanci
Marco Pavone
27
16
0
27 Jun 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
k
k
k
-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
18
6
0
15 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
21
18
0
22 Feb 2019
Relating Leverage Scores and Density using Regularized Christoffel Functions
Edouard Pauwels
Francis R. Bach
Jean-Philippe Vert
11
20
0
21 May 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
6
155
0
26 Apr 2018
Distributed Adaptive Sampling for Kernel Matrix Approximation
Daniele Calandriello
A. Lazaric
Michal Valko
27
23
0
27 Mar 2018
Learning Relevant Features of Data with Multi-scale Tensor Networks
Tayssir Doghri
25
137
0
31 Dec 2017
Subsampling for Ridge Regression via Regularized Volume Sampling
Michal Derezinski
Manfred K. Warmuth
26
20
0
14 Oct 2017
On the Sampling Problem for Kernel Quadrature
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
20
29
0
11 Jun 2017
Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Shusen Wang
Alex Gittens
Michael W. Mahoney
30
127
0
09 Jun 2017
Randomized Clustered Nystrom for Large-Scale Kernel Machines
Farhad Pourkamali Anaraki
Stephen Becker
26
33
0
20 Dec 2016
Faster Kernel Ridge Regression Using Sketching and Preconditioning
H. Avron
K. Clarkson
David P. Woodruff
32
121
0
10 Nov 2016
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
35
190
0
11 Aug 2016
Constructive neural network learning
Shaobo Lin
Jinshan Zeng
Xiaoqin Zhang
14
31
0
30 Apr 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
29
325
0
14 Feb 2016
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
24
32
0
19 Oct 2015
Efficient SDP Inference for Fully-connected CRFs Based on Low-rank Decomposition
Peng Wang
Chunhua Shen
A. Hengel
BDL
27
18
0
07 Apr 2015
On Data Preconditioning for Regularized Loss Minimization
Tianbao Yang
R. L. Jin
Shenghuo Zhu
Qihang Lin
40
9
0
13 Aug 2014
Matrix Coherence and the Nystrom Method
Ameet Talwalkar
Afshin Rostamizadeh
96
88
0
09 Aug 2014
LOCO: Distributing Ridge Regression with Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
Gabriel Krummenacher
47
34
0
13 Jun 2014
Randomized co-training: from cortical neurons to machine learning and back again
David Balduzzi
OOD
51
14
0
24 Oct 2013
1