ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6837
  4. Cited By
Residual Belief Propagation: Informed Scheduling for Asynchronous
  Message Passing

Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing

27 June 2012
G. Elidan
Ian McGraw
D. Koller
ArXivPDFHTML

Papers citing "Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing"

19 / 19 papers shown
Title
Leveraging graphical model techniques to study evolution on phylogenetic
  networks
Leveraging graphical model techniques to study evolution on phylogenetic networks
Benjamin Teo
P. Bastide
Cécile Ané
27
1
0
15 May 2024
Understanding the Behavior of Belief Propagation
Understanding the Behavior of Belief Propagation
Christian Knoll
3DV
12
3
0
05 Sep 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
Reactive Message Passing for Scalable Bayesian Inference
Reactive Message Passing for Scalable Bayesian Inference
Dmitry V. Bagaev
Bert De Vries
33
18
0
25 Dec 2021
Strengthening Probabilistic Graphical Models: The Purge-and-merge
  Algorithm
Strengthening Probabilistic Graphical Models: The Purge-and-merge Algorithm
Simon Streicher
J. D. Preez
TPM
19
4
0
30 Sep 2021
Equivariant Neural Network for Factor Graphs
Equivariant Neural Network for Factor Graphs
Fan-Yun Sun
Jonathan Kuck
Hao Tang
Stefano Ermon
27
1
0
29 Sep 2021
A visual introduction to Gaussian Belief Propagation
A visual introduction to Gaussian Belief Propagation
Joseph Ortiz
Talfan Evans
Andrew J. Davison
15
32
0
05 Jul 2021
Accelerating Feedforward Computation via Parallel Nonlinear Equation
  Solving
Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving
Yang Song
Chenlin Meng
Renjie Liao
Stefano Ermon
9
28
0
10 Feb 2020
Learning Data Dependency with Communication Cost
Learning Data Dependency with Communication Cost
Hyeryung Jang
Hyungseok Song
Yung Yi
19
1
0
29 Apr 2018
Graph Partition Neural Networks for Semi-Supervised Classification
Graph Partition Neural Networks for Semi-Supervised Classification
Renjie Liao
Marc Brockschmidt
Daniel Tarlow
Alexander L. Gaunt
R. Urtasun
R. Zemel
GNN
22
76
0
16 Mar 2018
Fixed Points of Belief Propagation -- An Analysis via Polynomial
  Homotopy Continuation
Fixed Points of Belief Propagation -- An Analysis via Polynomial Homotopy Continuation
Christian Knoll
Franz Pernkopf
D. Mehta
Tianran Chen
27
17
0
20 May 2016
Approximate inference on planar graphs using Loop Calculus and Belief
  Propagation
Approximate inference on planar graphs using Loop Calculus and Belief Propagation
Vicencc Gómez
H. Kappen
Michael Chertkov
55
18
0
09 Aug 2014
Linearized and Single-Pass Belief Propagation
Linearized and Single-Pass Belief Propagation
Wolfgang Gatterbauer
Stephan Günnemann
Danai Koutra
Christos Faloutsos
32
1
0
27 Jun 2014
Generalized Belief Propagation on Tree Robust Structured Region Graphs
Generalized Belief Propagation on Tree Robust Structured Region Graphs
A. Gelfand
Max Welling
35
6
0
16 Oct 2012
Template Based Inference in Symmetric Relational Markov Random Fields
Template Based Inference in Symmetric Relational Markov Random Fields
A. Jaimovich
Ofer Meshi
N. Friedman
38
51
0
20 Jun 2012
Distributed Parallel Inference on Large Factor Graphs
Distributed Parallel Inference on Large Factor Graphs
Joseph E. Gonzalez
Yucheng Low
Carlos Guestrin
D. O'Hallaron
GNN
LRM
51
65
0
09 May 2012
Mean Field Variational Approximation for Continuous-Time Bayesian
  Networks
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Ido Cohn
T. El-Hay
N. Friedman
R. Kupferman
47
72
0
09 May 2012
Distributed GraphLab: A Framework for Machine Learning in the Cloud
Distributed GraphLab: A Framework for Machine Learning in the Cloud
Yucheng Low
Joseph E. Gonzalez
Aapo Kyrola
Danny Bickson
Carlos Guestrin
J. M. Hellerstein
GNN
FedML
47
1,067
0
26 Apr 2012
Interpreting Graph Cuts as a Max-Product Algorithm
Interpreting Graph Cuts as a Max-Product Algorithm
Daniel Tarlow
Inmar E. Givoni
R. Zemel
B. Frey
34
3
0
05 May 2011
1