ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6128
  4. Cited By
Leave-one-out cross-validation is risk consistent for lasso

Leave-one-out cross-validation is risk consistent for lasso

26 June 2012
D. Homrighausen
D. McDonald
ArXivPDFHTML

Papers citing "Leave-one-out cross-validation is risk consistent for lasso"

14 / 14 papers shown
Title
A Cross Validation Framework for Signal Denoising with Applications to
  Trend Filtering, Dyadic CART and Beyond
A Cross Validation Framework for Signal Denoising with Applications to Trend Filtering, Dyadic CART and Beyond
A. Chaudhuri
S. Chatterjee
13
3
0
07 Jan 2022
Can we globally optimize cross-validation loss? Quasiconvexity in ridge
  regression
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
30
12
0
19 Jul 2021
Online Hyperparameter Search Interleaved with Proximal Parameter Updates
Online Hyperparameter Search Interleaved with Proximal Parameter Updates
Luis Miguel Lopez Ramos
B. Beferull-Lozano
21
3
0
06 Apr 2020
Semi-analytic approximate stability selection for correlated data in
  generalized linear models
Semi-analytic approximate stability selection for correlated data in generalized linear models
Takashi Takahashi
Y. Kabashima
11
4
0
19 Mar 2020
Approximate Cross-Validation in High Dimensions with Guarantees
Approximate Cross-Validation in High Dimensions with Guarantees
William T. Stephenson
Tamara Broderick
18
2
0
31 May 2019
Omitted variable bias of Lasso-based inference methods: A finite sample
  analysis
Omitted variable bias of Lasso-based inference methods: A finite sample analysis
Kaspar Wüthrich
Ying Zhu
12
27
0
20 Mar 2019
Consistent Risk Estimation in Moderately High-Dimensional Linear
  Regression
Consistent Risk Estimation in Moderately High-Dimensional Linear Regression
Ji Xu
A. Maleki
Kamiar Rahnama Rad
Daniel J. Hsu
11
13
0
05 Feb 2019
Predicting with Proxies: Transfer Learning in High Dimension
Predicting with Proxies: Transfer Learning in High Dimension
Hamsa Bastani
6
72
0
28 Dec 2018
On cross-validated Lasso in high dimensions
On cross-validated Lasso in high dimensions
Denis Chetverikov
Z. Liao
Victor Chernozhukov
29
80
0
07 May 2016
Consistent Parameter Estimation for LASSO and Approximate Message
  Passing
Consistent Parameter Estimation for LASSO and Approximate Message Passing
Ali Mousavi
A. Maleki
Richard G. Baraniuk
17
58
0
03 Nov 2015
High dimensional regression and matrix estimation without tuning
  parameters
High dimensional regression and matrix estimation without tuning parameters
S. Chatterjee
23
4
0
25 Oct 2015
Prediction error of cross-validated Lasso
Prediction error of cross-validated Lasso
S. Chatterjee
Jafar Jafarov
48
42
0
23 Feb 2015
On the Sensitivity of the Lasso to the Number of Predictor Variables
On the Sensitivity of the Lasso to the Number of Predictor Variables
Cheryl J. Flynn
Clifford M. Hurvich
J. Simonoff
42
14
0
18 Mar 2014
Risk-consistency of cross-validation with lasso-type procedures
Risk-consistency of cross-validation with lasso-type procedures
D. Homrighausen
D. McDonald
55
23
0
04 Aug 2013
1