ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.11097
6
72

Predicting with Proxies: Transfer Learning in High Dimension

28 December 2018
Hamsa Bastani
ArXivPDFHTML
Abstract

Predictive analytics is increasingly used to guide decision-making in many applications. However, in practice, we often have limited data on the true predictive task of interest, and must instead rely on more abundant data on a closely-related proxy predictive task. For example, e-commerce platforms use abundant customer click data (proxy) to make product recommendations rather than the relatively sparse customer purchase data (true outcome of interest); alternatively, hospitals often rely on medical risk scores trained on a different patient population (proxy) rather than their own patient population (true cohort of interest) to assign interventions. Yet, not accounting for the bias in the proxy can lead to sub-optimal decisions. Using real datasets, we find that this bias can often be captured by a sparse function of the features. Thus, we propose a novel two-step estimator that uses techniques from high-dimensional statistics to efficiently combine a large amount of proxy data and a small amount of true data. We prove upper bounds on the error of our proposed estimator and lower bounds on several heuristics used by data scientists; in particular, our proposed estimator can achieve the same accuracy with exponentially less true data (in the number of features). Our proof relies on a new LASSO tail inequality for approximately sparse vectors. Finally, we demonstrate the effectiveness of our approach on e-commerce and healthcare datasets; in both cases, we achieve significantly better predictive accuracy as well as managerial insights into the nature of the bias in the proxy data.

View on arXiv
Comments on this paper