ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.2944
  4. Cited By
Practical Bayesian Optimization of Machine Learning Algorithms

Practical Bayesian Optimization of Machine Learning Algorithms

13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
ArXivPDFHTML

Papers citing "Practical Bayesian Optimization of Machine Learning Algorithms"

50 / 2,247 papers shown
Title
Joint Alignment of Multivariate Quasi-Periodic Functional Data Using
  Deep Learning
Joint Alignment of Multivariate Quasi-Periodic Functional Data Using Deep Learning
Vi Thanh Pham
Jonas Bille Nielsen
K. F. Kofoed
J. T. Kühl
Andreas Kryger Jensen
13
0
0
14 Nov 2023
Beyond the training set: an intuitive method for detecting distribution
  shift in model-based optimization
Beyond the training set: an intuitive method for detecting distribution shift in model-based optimization
Farhan N. Damani
David H. Brookes
Theodore Sternlieb
Cameron Webster
Stephen Malina
Rishi Jajoo
Kathy Lin
Sam Sinai
OffRL
35
3
0
09 Nov 2023
An Initialization Schema for Neuronal Networks on Tabular Data
An Initialization Schema for Neuronal Networks on Tabular Data
Wolfgang Fuhl
21
0
0
07 Nov 2023
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in
  Gaussian Mixture Models
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
21
0
0
07 Nov 2023
Bayesian Optimization of Function Networks with Partial Evaluations
Bayesian Optimization of Function Networks with Partial Evaluations
Poompol Buathong
Jiayue Wan
Raul Astudillo
Sam Daulton
Maximilian Balandat
P. Frazier
34
2
0
03 Nov 2023
Adv3D: Generating Safety-Critical 3D Objects through Closed-Loop
  Simulation
Adv3D: Generating Safety-Critical 3D Objects through Closed-Loop Simulation
Jay Sarva
Jingkang Wang
James Tu
Yuwen Xiong
S. Manivasagam
R. Urtasun
57
8
0
02 Nov 2023
Advancing Bayesian Optimization via Learning Correlated Latent Space
Advancing Bayesian Optimization via Learning Correlated Latent Space
Seunghun Lee
Jaewon Chu
S. Kim
Juyeon Ko
Hyunwoo J. Kim
BDL
49
6
0
31 Oct 2023
Efficient Robust Bayesian Optimization for Arbitrary Uncertain Inputs
Efficient Robust Bayesian Optimization for Arbitrary Uncertain Inputs
Lin Yang
Junlong Lyu
Wenlong Lyu
Zhitang Chen
23
2
0
31 Oct 2023
PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices
PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices
Minghao Yan
Hongyi Wang
Shivaram Venkataraman
23
0
0
30 Oct 2023
ExPT: Synthetic Pretraining for Few-Shot Experimental Design
ExPT: Synthetic Pretraining for Few-Shot Experimental Design
Tung Nguyen
Sudhanshu Agrawal
Aditya Grover
27
15
0
30 Oct 2023
Metric Flows with Neural Networks
Metric Flows with Neural Networks
James Halverson
Fabian Ruehle
14
8
0
30 Oct 2023
Intrinsic Gaussian Vector Fields on Manifolds
Intrinsic Gaussian Vector Fields on Manifolds
Daniel Robert-Nicoud
Andreas Krause
Viacheslav Borovitskiy
29
5
0
28 Oct 2023
Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion
  Recognition
Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion Recognition
Yige Xu
Zhiwei Zeng
Zhiqi Shen
VLM
33
3
0
23 Oct 2023
Optimizing Retrieval-augmented Reader Models via Token Elimination
Optimizing Retrieval-augmented Reader Models via Token Elimination
Moshe Berchansky
Peter Izsak
Avi Caciularu
Ido Dagan
Moshe Wasserblat
RALM
50
12
0
20 Oct 2023
Solving Expensive Optimization Problems in Dynamic Environments with
  Meta-learning
Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning
Huan Zhang
Jinliang Ding
Liang Feng
Kay Chen Tan
Ke Li
34
3
0
19 Oct 2023
Leveraging Large Language Model for Automatic Evolving of Industrial
  Data-Centric R&D Cycle
Leveraging Large Language Model for Automatic Evolving of Industrial Data-Centric R&D Cycle
Xu Yang
Xiao Yang
Weiqing Liu
Jinhui Li
Peng Yu
Zeqi Ye
Jiang Bian
37
1
0
17 Oct 2023
Understanding an Acquisition Function Family for Bayesian Optimization
Understanding an Acquisition Function Family for Bayesian Optimization
Jiajie Kong
Tony Pourmohamad
Herbert K. H. Lee
19
0
0
16 Oct 2023
Latent Conservative Objective Models for Data-Driven Crystal Structure
  Prediction
Latent Conservative Objective Models for Data-Driven Crystal Structure Prediction
Han Qi
Xinyang Geng
Stefano Rando
Iku Ohama
Aviral Kumar
Sergey Levine
DiffM
42
2
0
16 Oct 2023
Relation-aware Ensemble Learning for Knowledge Graph Embedding
Relation-aware Ensemble Learning for Knowledge Graph Embedding
Ling Yue
Yongqi Zhang
Quanming Yao
Yong Li
Xian Wu
Ziheng Zhang
Zhenxi Lin
Yefeng Zheng
38
4
0
13 Oct 2023
CoLadder: Supporting Programmers with Hierarchical Code Generation in
  Multi-Level Abstraction
CoLadder: Supporting Programmers with Hierarchical Code Generation in Multi-Level Abstraction
Ryan Yen
Jiawen Zhu
Sangho Suh
Haijun Xia
Jian Zhao
46
14
0
12 Oct 2023
MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with
  Reinforcement Learning
MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning
Zeyuan Ma
Hongshu Guo
Jiacheng Chen
Zhenrui Li
Guojun Peng
Yue-jiao Gong
Yining Ma
Zhiguang Cao
OffRL
35
26
0
12 Oct 2023
ROMO: Retrieval-enhanced Offline Model-based Optimization
ROMO: Retrieval-enhanced Offline Model-based Optimization
Mingcheng Chen
Haoran Zhao
Yuxiang Zhao
Hulei Fan
Hongqiao Gao
Yong Yu
Zheng Tian
OffRL
18
1
0
11 Oct 2023
Serving Deep Learning Model in Relational Databases
Serving Deep Learning Model in Relational Databases
Alexandre Eichenberger
Qi Lin
Saif Masood
Hong Min
Alexander Sim
...
Yida Wang
Kesheng Wu
Binhang Yuan
Lixi Zhou
Jia Zou
29
0
0
07 Oct 2023
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced
  Transformer Deep kernels
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels
Alexander Shmakov
Avisek Naug
Vineet Gundecha
Sahand Ghorbanpour
Ricardo Luna Gutierrez
Ashwin Ramesh Babu
Antonio Guillen-Perez
Soumyendu Sarkar
37
11
0
05 Oct 2023
ProGO: Probabilistic Global Optimizer
ProGO: Probabilistic Global Optimizer
Xinyu Zhang
Sujit Ghosh
23
1
0
04 Oct 2023
Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine
  Constraints
Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine Constraints
Wenjie Xu
Yuning Jiang
B. Svetozarevic
Colin N. Jones
37
0
0
02 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
29
0
0
01 Oct 2023
3D Reconstruction in Noisy Agricultural Environments: A Bayesian
  Optimization Perspective for View Planning
3D Reconstruction in Noisy Agricultural Environments: A Bayesian Optimization Perspective for View Planning
Athanasios Bacharis
Konstantinos D. Polyzos
H. J. Nelson
G. Giannakis
Nikolaos Papanikolopoulos
33
1
0
29 Sep 2023
Optimizing with Low Budgets: a Comparison on the Black-box Optimization
  Benchmarking Suite and OpenAI Gym
Optimizing with Low Budgets: a Comparison on the Black-box Optimization Benchmarking Suite and OpenAI Gym
E. Raponi
Nathanaël Carraz Rakotonirina
Jérémy Rapin
Carola Doerr
O. Teytaud
37
5
0
29 Sep 2023
Transfer Learning for Bayesian Optimization on Heterogeneous Search
  Spaces
Transfer Learning for Bayesian Optimization on Heterogeneous Search Spaces
Maria-Irina Nicolae
Max Eisele
Zehao Wang
35
8
0
28 Sep 2023
Prompt Tuned Embedding Classification for Multi-Label Industry Sector
  Allocation
Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation
V. Buchner
Lele Cao
Jan-Christoph Kalo
Vilhelm von Ehrenheim
VLM
42
1
0
21 Sep 2023
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian
  Processes
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes
M. Noack
Hengrui Luo
M. Risser
GP
32
11
0
18 Sep 2023
Learning Covariances for Estimation with Constrained Bilevel
  Optimization
Learning Covariances for Estimation with Constrained Bilevel Optimization
Mohamad Qadri
Zachary Manchester
Michael Kaess
32
4
0
18 Sep 2023
Rethinking Learning Rate Tuning in the Era of Large Language Models
Rethinking Learning Rate Tuning in the Era of Large Language Models
Hongpeng Jin
Wenqi Wei
Xuyu Wang
Wenbin Zhang
Yanzhao Wu
18
11
0
16 Sep 2023
Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate
  Optimization Problems
Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate Optimization Problems
Rafael Monteiro
K. Sau
29
1
0
14 Sep 2023
A supervised generative optimization approach for tabular data
A supervised generative optimization approach for tabular data
S. Nakamura-Sakai
Fadi Hamad
Saheed O. Obitayo
Vamsi K. Potluru
21
2
0
10 Sep 2023
Towards General and Efficient Online Tuning for Spark
Towards General and Efficient Online Tuning for Spark
Yang Li
Huaijun Jiang
Yu Shen
Yide Fang
Xiaofeng Yang
...
Xinyi Zhang
Wentao Zhang
Ce Zhang
Peng Chen
Bin Cui
29
12
0
05 Sep 2023
Polynomial-Model-Based Optimization for Blackbox Objectives
Polynomial-Model-Based Optimization for Blackbox Objectives
Janina Schreiber
D. Wicaksono
Michael Hecht
8
0
0
01 Sep 2023
One Model Many Scores: Using Multiverse Analysis to Prevent Fairness
  Hacking and Evaluate the Influence of Model Design Decisions
One Model Many Scores: Using Multiverse Analysis to Prevent Fairness Hacking and Evaluate the Influence of Model Design Decisions
Jan Simson
Florian Pfisterer
Christoph Kern
27
12
0
31 Aug 2023
CDAN: Convolutional Dense Attention-guided Network for Low-light Image
  Enhancement
CDAN: Convolutional Dense Attention-guided Network for Low-light Image Enhancement
Hossein Shakibania
Sina Raoufi
H. Khotanlou
35
6
0
24 Aug 2023
Reinforcement Learning Informed Evolutionary Search for Autonomous
  Systems Testing
Reinforcement Learning Informed Evolutionary Search for Autonomous Systems Testing
D. Humeniuk
Foutse Khomh
G. Antoniol
33
4
0
24 Aug 2023
On Estimating the Gradient of the Expected Information Gain in Bayesian
  Experimental Design
On Estimating the Gradient of the Expected Information Gain in Bayesian Experimental Design
Ziqiao Ao
Jinglai Li
30
2
0
19 Aug 2023
Constrained Bayesian Optimization Using a Lagrange Multiplier Applied to
  Power Transistor Design
Constrained Bayesian Optimization Using a Lagrange Multiplier Applied to Power Transistor Design
Ping-Ju Chuang
A. Saadat
Sara Ghazvini
H. Edwards
W. Vandenberghe
8
1
0
18 Aug 2023
Recognizing Intent in Collaborative Manipulation
Recognizing Intent in Collaborative Manipulation
Zhanibek Rysbek
K. Oh
Milos Zefran
14
4
0
17 Aug 2023
FedPop: Federated Population-based Hyperparameter Tuning
FedPop: Federated Population-based Hyperparameter Tuning
Haokun Chen
Denis Krompass
Jindong Gu
Volker Tresp
FedML
38
0
0
16 Aug 2023
Robust Bayesian Satisficing
Robust Bayesian Satisficing
Artun Saday
Yacsar Cahit Yildirim
Cem Tekin
80
2
0
16 Aug 2023
Control-aware echo state networks (Ca-ESN) for the suppression of
  extreme events
Control-aware echo state networks (Ca-ESN) for the suppression of extreme events
A. Racca
Luca Magri
11
2
0
06 Aug 2023
Synthesizing Programmatic Policies with Actor-Critic Algorithms and ReLU
  Networks
Synthesizing Programmatic Policies with Actor-Critic Algorithms and ReLU Networks
S. Orfanos
Levi H. S. Lelis
24
6
0
04 Aug 2023
Efficient Model Adaptation for Continual Learning at the Edge
Efficient Model Adaptation for Continual Learning at the Edge
Z. Daniels
Jun Hu
M. Lomnitz
P.E.T.E.R.G. Miller
Aswin Raghavan
Joe Zhang
M. Piacentino
David C. Zhang
OOD
27
2
0
03 Aug 2023
Incorporating Season and Solar Specificity into Renderings made by a
  NeRF Architecture using Satellite Images
Incorporating Season and Solar Specificity into Renderings made by a NeRF Architecture using Satellite Images
Michael Gableman
A. Kak
30
8
0
02 Aug 2023
Previous
123...678...434445
Next