ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.2944
  4. Cited By
Practical Bayesian Optimization of Machine Learning Algorithms

Practical Bayesian Optimization of Machine Learning Algorithms

13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
ArXivPDFHTML

Papers citing "Practical Bayesian Optimization of Machine Learning Algorithms"

50 / 2,248 papers shown
Title
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Fighting Redundancy and Model Decay with Embeddings
Fighting Redundancy and Model Decay with Embeddings
Dan Shiebler
Luca Belli
Jay Baxter
Hanchen Xiong
A. Tayal
22
4
0
18 Sep 2018
Parameterless Stochastic Natural Gradient Method for Discrete
  Optimization and its Application to Hyper-Parameter Optimization for Neural
  Network
Parameterless Stochastic Natural Gradient Method for Discrete Optimization and its Application to Hyper-Parameter Optimization for Neural Network
K. Nishida
H. Aguirre
Shota Saito
Shinichi Shirakawa
Youhei Akimoto
16
1
0
18 Sep 2018
Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints,
  High-Dimensionality and Saddle-Points
Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality and Saddle-Points
Krishnakumar Balasubramanian
Saeed Ghadimi
ODL
22
100
0
17 Sep 2018
Hardware-Aware Machine Learning: Modeling and Optimization
Hardware-Aware Machine Learning: Modeling and Optimization
Diana Marculescu
Dimitrios Stamoulis
E. Cai
19
45
0
14 Sep 2018
Benchmarking and Optimization of Gradient Boosting Decision Tree
  Algorithms
Benchmarking and Optimization of Gradient Boosting Decision Tree Algorithms
Andreea Anghel
N. Papandreou
Thomas Parnell
Alessandro De Palma
H. Pozidis
17
51
0
12 Sep 2018
Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields
Alexander von Rohr
Sebastian Trimpe
A. Marco
P. Fischer
S. Palagi
22
16
0
10 Sep 2018
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter
  Optimization
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization
Gowtham Muniraju
B. Kailkhura
Jayaraman J. Thiagarajan
P. Bremer
C. Tepedelenlioğlu
A. Spanias
22
10
0
05 Sep 2018
A new Taxonomy of Continuous Global Optimization Algorithms
A new Taxonomy of Continuous Global Optimization Algorithms
Jörg Stork
A. E. Eiben
T. Bartz-Beielstein
20
33
0
27 Aug 2018
Deep Learning: Computational Aspects
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINN
BDL
AI4CE
29
14
0
26 Aug 2018
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
Pierre E. Jacob
32
33
0
23 Aug 2018
Neural Architecture Optimization
Neural Architecture Optimization
Renqian Luo
Fei Tian
Tao Qin
Enhong Chen
Tie-Yan Liu
3DV
37
649
0
22 Aug 2018
On a New Improvement-Based Acquisition Function for Bayesian
  Optimization
On a New Improvement-Based Acquisition Function for Bayesian Optimization
Umberto Noè
D. Husmeier
13
21
0
21 Aug 2018
Optimizing Deep Neural Network Architecture: A Tabu Search Based
  Approach
Optimizing Deep Neural Network Architecture: A Tabu Search Based Approach
Tarun Kumar Gupta
Khalid Raza
9
60
0
17 Aug 2018
Deep Convolutional Networks as shallow Gaussian Processes
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
20
268
0
16 Aug 2018
OBOE: Collaborative Filtering for AutoML Model Selection
OBOE: Collaborative Filtering for AutoML Model Selection
Chengrun Yang
Yuji Akimoto
Dae Won Kim
Madeleine Udell
21
100
0
09 Aug 2018
Data-driven polynomial chaos expansion for machine learning regression
Data-driven polynomial chaos expansion for machine learning regression
Emiliano Torre
S. Marelli
P. Embrechts
Bruno Sudret
31
130
0
09 Aug 2018
DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology
  from Cancer Transcriptome
DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome
B. Azarkhalili
A. Saberi
H. Chitsaz
A. Sharifi-Zarchi
AI4CE
15
0
0
07 Aug 2018
Designing Adaptive Neural Networks for Energy-Constrained Image
  Classification
Designing Adaptive Neural Networks for Energy-Constrained Image Classification
Dimitrios Stamoulis
Ting-Wu Chin
Anand P. Krishnan
Haocheng Fang
S. Sajja
Mitchell Bognar
Diana Marculescu
6
62
0
05 Aug 2018
Efficient Progressive Neural Architecture Search
Efficient Progressive Neural Architecture Search
Juan-Manuel Perez-Rua
M. Baccouche
S. Pateux
16
44
0
01 Aug 2018
Is One Hyperparameter Optimizer Enough?
Is One Hyperparameter Optimizer Enough?
Huy Tu
V. Nair
18
15
0
29 Jul 2018
MaskConnect: Connectivity Learning by Gradient Descent
MaskConnect: Connectivity Learning by Gradient Descent
Karim Ahmed
Lorenzo Torresani
30
49
0
28 Jul 2018
Learning to guide task and motion planning using score-space
  representation
Learning to guide task and motion planning using score-space representation
Beomjoon Kim
Zi Wang
L. Kaelbling
Tomas Lozano-Perez
27
90
0
26 Jul 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
24
99
0
24 Jul 2018
Auto-adaptive Resonance Equalization using Dilated Residual Networks
Auto-adaptive Resonance Equalization using Dilated Residual Networks
M. Grachten
Emmanuel Deruty
Alexandre Tanguy
4
2
0
23 Jul 2018
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
  Networks
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
Tobias Hinz
Nicolás Navarro-Guerrero
S. Magg
S. Wermter
27
104
0
19 Jul 2018
Towards Automated Deep Learning: Efficient Joint Neural Architecture and
  Hyperparameter Search
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
Arber Zela
Aaron Klein
Stefan Falkner
Frank Hutter
35
159
0
18 Jul 2018
Tune: A Research Platform for Distributed Model Selection and Training
Tune: A Research Platform for Distributed Model Selection and Training
Richard Liaw
Eric Liang
Robert Nishihara
Philipp Moritz
Joseph E. Gonzalez
Ion Stoica
42
884
0
13 Jul 2018
Automatic Gradient Boosting
Automatic Gradient Boosting
Janek Thomas
Stefan Coors
B. Bischl
24
23
0
10 Jul 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
48
1,746
0
08 Jul 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
43
1,073
0
04 Jul 2018
Restructuring Batch Normalization to Accelerate CNN Training
Restructuring Batch Normalization to Accelerate CNN Training
Wonkyung Jung
Daejin Jung
and Byeongho Kim
Sunjung Lee
Wonjong Rhee
Jung Ho Ahn
24
62
0
04 Jul 2018
Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization
Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization
Dipti Jasrasaria
Edward O. Pyzer-Knapp
19
21
0
03 Jul 2018
New Heuristics for Parallel and Scalable Bayesian Optimization
New Heuristics for Parallel and Scalable Bayesian Optimization
Ran Rubin
15
0
0
01 Jul 2018
Trust-Region Algorithms for Training Responses: Machine Learning Methods
  Using Indefinite Hessian Approximations
Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations
Jennifer B. Erway
J. Griffin
Roummel F. Marcia
Riadh Omheni
16
24
0
01 Jul 2018
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian
  networks
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks
Irene Córdoba-Sánchez
E.C. Garrido-Merchán
Daniel Hernández-Lobato
C. Bielza
P. Larrañaga
TPM
12
11
0
28 Jun 2018
Auto-Keras: An Efficient Neural Architecture Search System
Auto-Keras: An Efficient Neural Architecture Search System
Haifeng Jin
Qingquan Song
Xia Hu
40
795
0
27 Jun 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Bayesian Optimization of Combinatorial Structures
Bayesian Optimization of Combinatorial Structures
Ricardo Baptista
Matthias Poloczek
32
135
0
22 Jun 2018
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
522
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
56
933
0
20 Jun 2018
Uncertainty in Multitask Transfer Learning
Uncertainty in Multitask Transfer Learning
Alexandre Lacoste
Boris N. Oreshkin
Wonchang Chung
Thomas Boquet
Negar Rostamzadeh
David M. Krueger
BDL
UQCV
SSL
24
21
0
20 Jun 2018
Using J-K fold Cross Validation to Reduce Variance When Tuning NLP
  Models
Using J-K fold Cross Validation to Reduce Variance When Tuning NLP Models
Henry B. Moss
David S. Leslie
Paul Rayson
9
32
0
19 Jun 2018
Segmentation of Photovoltaic Module Cells in Uncalibrated
  Electroluminescence Images
Segmentation of Photovoltaic Module Cells in Uncalibrated Electroluminescence Images
S. Deitsch
C. Buerhop‐Lutz
E. Sovetkin
A. Steland
Andreas Maier
F. Gallwitz
Christian Riess
24
62
0
18 Jun 2018
A unified strategy for implementing curiosity and empowerment driven
  reinforcement learning
A unified strategy for implementing curiosity and empowerment driven reinforcement learning
Ildefons Magrans de Abril
Ryota Kanai
33
18
0
18 Jun 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
112
718
0
13 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
38
44
0
12 Jun 2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
23
69
0
12 Jun 2018
Learning an Approximate Model Predictive Controller with Guarantees
Learning an Approximate Model Predictive Controller with Guarantees
Michael Hertneck
Johannes Köhler
Sebastian Trimpe
Frank Allgöwer
37
221
0
11 Jun 2018
Smallify: Learning Network Size while Training
Smallify: Learning Network Size while Training
Guillaume Leclerc
Manasi Vartak
Raul Castro Fernandez
Tim Kraska
Samuel Madden
14
13
0
10 Jun 2018
Previous
123...353637...434445
Next