Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.2944
Cited By
Practical Bayesian Optimization of Machine Learning Algorithms
13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Bayesian Optimization of Machine Learning Algorithms"
50 / 2,248 papers shown
Title
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
27
40
0
15 Jun 2020
Intra-Processing Methods for Debiasing Neural Networks
Yash Savani
Colin White
G. NaveenSundar
16
43
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
100
0
15 Jun 2020
Learning Heuristic Selection with Dynamic Algorithm Configuration
David Speck
André Biedenkapp
Frank Hutter
Robert Mattmüller
Marius Lindauer
27
29
0
15 Jun 2020
Improved Complexities for Stochastic Conditional Gradient Methods under Interpolation-like Conditions
Tesi Xiao
Krishnakumar Balasubramanian
Saeed Ghadimi
25
2
0
15 Jun 2020
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
32
34
0
14 Jun 2020
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
Vu-Linh Nguyen
Tam Le
M. Yamada
Michael A. Osborne
AI4TS
26
37
0
13 Jun 2020
Interpretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels
Binxin Ru
Xingchen Wan
Xiaowen Dong
Michael A. Osborne
17
21
0
13 Jun 2020
Generalizing Gain Penalization for Feature Selection in Tree-based Models
Bruna D. Wundervald
Andrew C. Parnell
Katarina Domijan
22
6
0
12 Jun 2020
Uncertainty quantification using martingales for misspecified Gaussian processes
Willie Neiswanger
Aaditya Ramdas
UQCV
14
14
0
12 Jun 2020
Optimizing generalization on the train set: a novel gradient-based framework to train parameters and hyperparameters simultaneously
Karim Lounici
Katia Méziani
Benjamin Riu
35
1
0
11 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Model-Size Reduction for Reservoir Computing by Concatenating Internal States Through Time
Yusuke Sakemi
K. Morino
T. Leleu
Kazuyuki Aihara
29
20
0
11 Jun 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
41
481
0
10 Jun 2020
Toward Building Safer Smart Homes for the People with Disabilities
Shahinur Alam
M. Mahmud
M. Yeasin
16
4
0
10 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
15
34
0
09 Jun 2020
Adaptation Strategies for Automated Machine Learning on Evolving Data
B. Celik
Joaquin Vanschoren
27
52
0
09 Jun 2020
AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles
Sicong Liu
Junzhao Du
Kaiming Nan
Zimu Zhou
Zhangyang Wang
Yingyan Lin
32
30
0
08 Jun 2020
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation
Julian Berk
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
26
38
0
08 Jun 2020
Efficient AutoML Pipeline Search with Matrix and Tensor Factorization
Chengrun Yang
Jicong Fan
Ziyang Wu
Madeleine Udell
27
8
0
07 Jun 2020
Steganography GAN: Cracking Steganography with Cycle Generative Adversarial Networks
Nibraas Khan
Ruj Haan
George Boktor
Michael Mccomas
Ramin Daneshi
GAN
14
3
0
07 Jun 2020
Sparse representation for damage identification of structural systems
Zhao Chen
Hao Sun
6
17
0
06 Jun 2020
AutoHAS: Efficient Hyperparameter and Architecture Search
Xuanyi Dong
Mingxing Tan
Adams Wei Yu
Daiyi Peng
Bogdan Gabrys
Quoc V. Le
TPM
27
23
0
05 Jun 2020
An Ergodic Measure for Active Learning From Equilibrium
Ian Abraham
A. Prabhakar
Todd D. Murphey
26
22
0
05 Jun 2020
Bayesian optimization for modular black-box systems with switching costs
Chi-Heng Lin
Joseph D. Miano
Eva L. Dyer
13
5
0
04 Jun 2020
Autonomous Materials Discovery Driven by Gaussian Process Regression with Inhomogeneous Measurement Noise and Anisotropic Kernels
M. Noack
G. Doerk
Ruipeng Li
Jason K. Streit
R. Vaia
Kevin Yager
M. Fukuto
28
70
0
03 Jun 2020
Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules
Michele Fraccaroli
E. Lamma
Fabrizio Riguzzi
BDL
16
2
0
03 Jun 2020
A Scalable and Cloud-Native Hyperparameter Tuning System
Johnu George
Ce Gao
Richard Liu
Hou Gang Liu
Yuan Tang
Ramdoot Pydipaty
Amit Kumar Saha
13
13
0
03 Jun 2020
Hierarchical forecast reconciliation with machine learning
Evangelos Spiliotis
M. Abolghasemi
Rob J. Hyndman
F. Petropoulos
Vassilios Assimakopoulos
14
46
0
03 Jun 2020
Geometric Graph Representations and Geometric Graph Convolutions for Deep Learning on Three-Dimensional (3D) Graphs
Daniel T. Chang
GNN
23
3
0
02 Jun 2020
Feature-weighted elastic net: using "features of features" for better prediction
J. K. Tay
N. Aghaeepour
Trevor Hastie
Robert Tibshirani
4
13
0
02 Jun 2020
Hyperparameter optimization with REINFORCE and Transformers
C. Krishna
Ashish Gupta
Swarnim Narayan
Himanshu Rai
Diksha Manchanda
19
2
0
01 Jun 2020
Data-Driven Methods to Monitor, Model, Forecast and Control Covid-19 Pandemic: Leveraging Data Science, Epidemiology and Control Theory
Teodoro Alamo
Daniel Gutiérrez-Reina
P. Millán
19
27
0
01 Jun 2020
Semi-supervised Embedding Learning for High-dimensional Bayesian Optimization
Jingfan Chen
Guanghui Zhu
Chun Yuan
Yihua Huang
25
15
0
29 May 2020
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
28
66
0
28 May 2020
From Prediction to Prescription: Evolutionary Optimization of Non-Pharmaceutical Interventions in the COVID-19 Pandemic
Risto Miikkulainen
Olivier Francon
Elliot Meyerson
Xin Qiu
Elisa Canzani
B. Hodjat
29
3
0
28 May 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
25
4
0
26 May 2020
Fast differentiable DNA and protein sequence optimization for molecular design
Johannes Linder
Georg Seelig
41
54
0
22 May 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
25
8
0
22 May 2020
Global Optimization of Gaussian processes
Artur M. Schweidtmann
D. Bongartz
D. Grothe
Tim Kerkenhoff
Xiaopeng Lin
J. Najman
Alexander Mitsos
12
40
0
21 May 2020
HyperSTAR: Task-Aware Hyperparameters for Deep Networks
Gaurav Mittal
Chang Liu
Nikolaos Karianakis
Victor Fragoso
Mei Chen
Y. Fu
VLM
48
23
0
21 May 2020
Rethinking Performance Estimation in Neural Architecture Search
Xiawu Zheng
Rongrong Ji
Qiang-qiang Wang
QiXiang Ye
Zhenguo Li
Yonghong Tian
Q. Tian
24
17
0
20 May 2020
Reliability and Robustness analysis of Machine Learning based Phishing URL Detectors
Bushra Sabir
Muhammad Ali Babar
R. Gaire
A. Abuadbba
AAML
35
10
0
18 May 2020
Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?
Nadezhda Chirkova
E. Lobacheva
Dmitry Vetrov
OOD
MoE
34
9
0
14 May 2020
Real-time Facial Expression Recognition "In The Wild'' by Disentangling 3D Expression from Identity
Mohammad Rami Koujan
L. Alharbawee
Giorgos Giannakakis
N. Pugeault
A. Roussos
CVBM
3DH
33
30
0
12 May 2020
Using Bayesian Optimization to Accelerate Virtual Screening for the Discovery of Therapeutics Appropriate for Repurposing for COVID-19
Edward O. Pyzer-Knapp
25
7
0
11 May 2020
Ensembled sparse-input hierarchical networks for high-dimensional datasets
Jean Feng
N. Simon
19
4
0
11 May 2020
Sequential Gallery for Interactive Visual Design Optimization
Yuki Koyama
Issei Sato
Masataka Goto
30
76
0
08 May 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
Amortized Bayesian Inference for Models of Cognition
Stefan T. Radev
A. Voss
Eva Marie Wieschen
Paul-Christian Bürkner
6
5
0
08 May 2020
Previous
1
2
3
...
25
26
27
...
43
44
45
Next