ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1623
  4. Cited By
Proximal Newton-type methods for minimizing composite functions

Proximal Newton-type methods for minimizing composite functions

7 June 2012
Jason D. Lee
Yuekai Sun
M. Saunders
ArXivPDFHTML

Papers citing "Proximal Newton-type methods for minimizing composite functions"

17 / 17 papers shown
Title
Stochastic Variable Metric Proximal Gradient with variance reduction for
  non-convex composite optimization
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Second-order Conditional Gradient Sliding
Second-order Conditional Gradient Sliding
Alejandro Carderera
Sebastian Pokutta
26
12
0
20 Feb 2020
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein
  Stepsize
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize
Youngsuk Park
Sauptik Dhar
Stephen P. Boyd
Mohak Shah
11
26
0
15 Oct 2019
Regularized Maximum Likelihood Estimation and Feature Selection in
  Mixtures-of-Experts Models
Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models
Faicel Chamroukhi
B. Huynh
TPM
11
17
0
29 Oct 2018
Proximal algorithms for large-scale statistical modeling and
  sensor/actuator selection
Proximal algorithms for large-scale statistical modeling and sensor/actuator selection
A. Zare
Hesameddin Mohammadi
Neil K. Dhingra
T. Georgiou
M. Jovanović
19
44
0
04 Jul 2018
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization
  with Nonsmooth Regularization
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization
Ching-pei Lee
Cong Han Lim
Stephen J. Wright
23
29
0
04 Mar 2018
Loss-aware Weight Quantization of Deep Networks
Loss-aware Weight Quantization of Deep Networks
Lu Hou
James T. Kwok
MQ
35
127
0
23 Feb 2018
An inexact subsampled proximal Newton-type method for large-scale
  machine learning
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
Jason D. Lee
Yuekai Sun
35
15
0
28 Aug 2017
Low-rank and Sparse NMF for Joint Endmembers' Number Estimation and
  Blind Unmixing of Hyperspectral Images
Low-rank and Sparse NMF for Joint Endmembers' Number Estimation and Blind Unmixing of Hyperspectral Images
Paris V. Giampouras
A. Rontogiannis
K. Koutroumbas
18
7
0
16 Mar 2017
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
24
60
0
14 Mar 2017
Geometric descent method for convex composite minimization
Geometric descent method for convex composite minimization
Shixiang Chen
Shiqian Ma
Wei Liu
36
10
0
29 Dec 2016
Randomized block proximal damped Newton method for composite
  self-concordant minimization
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
22
11
0
01 Jul 2016
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
26
13
0
28 Nov 2015
Composite convex minimization involving self-concordant-like cost
  functions
Composite convex minimization involving self-concordant-like cost functions
Quoc Tran-Dinh
Yen-Huan Li
V. Cevher
34
19
0
04 Feb 2015
Communication-Efficient Distributed Optimization of Self-Concordant
  Empirical Loss
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
38
72
0
01 Jan 2015
Proximal Quasi-Newton for Computationally Intensive L1-regularized
  M-estimators
Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators
Kai Zhong
Ian En-Hsu Yen
Inderjit S. Dhillon
Pradeep Ravikumar
56
31
0
27 Jun 2014
G-AMA: Sparse Gaussian graphical model estimation via alternating
  minimization
G-AMA: Sparse Gaussian graphical model estimation via alternating minimization
Onkar Dalal
B. Rajaratnam
24
26
0
13 May 2014
1