ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.6453
  4. Cited By
Learning with Submodular Functions: A Convex Optimization Perspective

Learning with Submodular Functions: A Convex Optimization Perspective

28 November 2011
Francis R. Bach
ArXivPDFHTML

Papers citing "Learning with Submodular Functions: A Convex Optimization Perspective"

34 / 34 papers shown
Title
Structured Prediction with Abstention via the Lovász Hinge
Structured Prediction with Abstention via the Lovász Hinge
Jessie Finocchiaro
Rafael M. Frongillo
Enrique Nueve
26
0
0
09 May 2025
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
Sangwoo Shin
H. Hino
19
0
0
02 Aug 2024
Building a Winning Team: Selecting Source Model Ensembles using a
  Submodular Transferability Estimation Approach
Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach
KB Vimal
Saketh Bachu
Tanmay Garg
Niveditha Lakshmi Narasimhan
Raghavan Konuru
Vineeth N. Balasubramanian
34
2
0
05 Sep 2023
Multi-objective optimisation via the R2 utilities
Multi-objective optimisation via the R2 utilities
Ben Tu
N. Kantas
Robert M. Lee
B. Shafei
126
3
0
19 May 2023
Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering
  based on the 1-Laplacian
Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering based on the 1-Laplacian
Yu Zhu
Boning Li
Santiago Segarra
19
3
0
30 Apr 2023
Neural Estimation of Submodular Functions with Applications to
  Differentiable Subset Selection
Neural Estimation of Submodular Functions with Applications to Differentiable Subset Selection
A. De
Soumen Chakrabarti
16
4
0
20 Oct 2022
Resource Allocation to Agents with Restrictions: Maximizing Likelihood
  with Minimum Compromise
Resource Allocation to Agents with Restrictions: Maximizing Likelihood with Minimum Compromise
Yohai Trabelsi
Abhijin Adiga
Sarit Kraus
Sujith Ravi
19
5
0
12 Sep 2022
Hypergraphs with Edge-Dependent Vertex Weights: p-Laplacians and
  Spectral Clustering
Hypergraphs with Edge-Dependent Vertex Weights: p-Laplacians and Spectral Clustering
Yu Zhu
Santiago Segarra
14
3
0
15 Aug 2022
Combinatorial optimization for low bit-width neural networks
Combinatorial optimization for low bit-width neural networks
Hanxu Zhou
Aida Ashrafi
Matthew B. Blaschko
MQ
19
0
0
04 Jun 2022
Collision Detection Accelerated: An Optimization Perspective
Collision Detection Accelerated: An Optimization Perspective
Louis Montaut
Quentin Le Lidec
Vladimir Petrik
Josef Sivic
Justin Carpentier
8
19
0
19 May 2022
Submodlib: A Submodular Optimization Library
Submodlib: A Submodular Optimization Library
Vishal Kaushal
Ganesh Ramakrishnan
Rishabh K. Iyer
36
12
0
22 Feb 2022
Information Theory with Kernel Methods
Information Theory with Kernel Methods
Francis R. Bach
18
40
0
17 Feb 2022
Large-Scale Unsupervised Object Discovery
Large-Scale Unsupervised Object Discovery
Huy V. Vo
Elena Sizikova
Cordelia Schmid
P. Pérez
Jean Ponce
ObjD
14
54
0
12 Jun 2021
Multiple Plans are Better than One: Diverse Stochastic Planning
Multiple Plans are Better than One: Diverse Stochastic Planning
Mahsa Ghasemi
Evan Scope Crafts
Bo Zhao
Ufuk Topcu
17
5
0
31 Dec 2020
Sparse Approximate Solutions to Max-Plus Equations with Application to
  Multivariate Convex Regression
Sparse Approximate Solutions to Max-Plus Equations with Application to Multivariate Convex Regression
Nikos Tsilivis
Anastasios Tsiamis
Petros Maragos
18
3
0
06 Nov 2020
An optimization problem for continuous submodular functions
An optimization problem for continuous submodular functions
L. Csirmaz
11
2
0
26 Sep 2020
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron
  Relaxations for Neural Network Verification
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification
Christian Tjandraatmadja
Ross Anderson
Joey Huchette
Will Ma
Krunal Patel
J. Vielma
AAML
21
89
0
24 Jun 2020
Differentially Private Empirical Risk Minimization with
  Sparsity-Inducing Norms
Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms
K. S. S. Kumar
M. Deisenroth
13
6
0
13 May 2019
Unsupervised Image Matching and Object Discovery as Optimization
Unsupervised Image Matching and Object Discovery as Optimization
Huy V. Vo
Francis R. Bach
Minsu Cho
Kai Han
Yann LeCun
P. Pérez
Jean Ponce
OCL
21
65
0
05 Apr 2019
Generalized semimodularity: order statistics
Generalized semimodularity: order statistics
I. Pinelis
18
1
0
14 Feb 2019
Approximate Submodular Functions and Performance Guarantees
Approximate Submodular Functions and Performance Guarantees
Gaurav Gupta
S. Pequito
P. Bogdan
13
6
0
17 Jun 2018
Maximizing acquisition functions for Bayesian optimization
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
21
238
0
25 May 2018
Stochastic Submodular Maximization: The Case of Coverage Functions
Stochastic Submodular Maximization: The Case of Coverage Functions
Mohammad Reza Karimi
Mario Lucic
S. Hassani
Andreas Krause
24
56
0
05 Nov 2017
Greedy Sampling of Graph Signals
Greedy Sampling of Graph Signals
Luiz F. O. Chamon
Alejandro Ribeiro
11
126
0
05 Apr 2017
Guarantees for Greedy Maximization of Non-submodular Functions with
  Applications
Guarantees for Greedy Maximization of Non-submodular Functions with Applications
Yatao Bian
J. M. Buhmann
Andreas Krause
Sebastian Tschiatschek
21
236
0
06 Mar 2017
Decomposable Submodular Function Minimization: Discrete and Continuous
Decomposable Submodular Function Minimization: Discrete and Continuous
Alina Ene
Huy Le Nguyen
László A. Végh
23
25
0
06 Mar 2017
The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses
The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses
Jiaqian Yu
Matthew Blaschko
13
38
0
24 Dec 2015
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
Tianbao Yang
Qihang Lin
22
84
0
09 Dec 2015
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
Simon Lacoste-Julien
Martin Jaggi
16
407
0
18 Nov 2015
A Geometric View on Constrained M-Estimators
A Geometric View on Constrained M-Estimators
Yen-Huan Li
Ya-Ping Hsieh
N. Zerbib
V. Cevher
19
6
0
26 Jun 2015
Convex Optimization for Parallel Energy Minimization
Convex Optimization for Parallel Energy Minimization
K. S. S. Kumar
Á. Jiménez
Stefanie Jegelka
S. Sra
Francis R. Bach
26
9
0
05 Mar 2015
Random Coordinate Descent Methods for Minimizing Decomposable Submodular
  Functions
Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions
Alina Ene
Huy Le Nguyen
29
43
0
09 Feb 2015
On the Equivalence between Herding and Conditional Gradient Algorithms
On the Equivalence between Herding and Conditional Gradient Algorithms
Francis R. Bach
Simon Lacoste-Julien
G. Obozinski
50
168
0
20 Mar 2012
Structured sparsity through convex optimization
Structured sparsity through convex optimization
Francis R. Bach
Rodolphe Jenatton
Julien Mairal
G. Obozinski
74
323
0
12 Sep 2011
1